Q00X

Manual for version 1.13.1

7
A\ /A

Written by Dimitri van Heesch

©1997-2025

Contents

1

2

2.1
2.2
2.3
2.4

3

3.1
3.2
3.3

3.4

4
41

4.2

User Manual

Introduction

Installation

Compiling fromsource on UNIX o

Installing the binaries on UNIX

Compiling from source on Windows e

Installing the binarieson Windows

Getting started

Step 0: Check if Doxygen supports your programming/hardware description language
Step 1: Creating a configurationfile
Step 2: Running DOXygen e e e
3.3.1 HTMLoutput o e e e e
3.3.2 LaTeXoutput e
3.3.3 RTFoutput e e e e e
3.34 XMLoutput e
3.35 Manpageoutput e e e e e
3.3.6 DocBookoutput e e e
Step 3: Documentingthe sources

Documenting the code

Special commentblocks L
4.1.1 Comment blocks for C-like languages (C/C++/C#/Objective-C/PHP/Java)
Putting documentation aftermemberso oL
Examples e
Documentation at otherplaces Lo
4.1.2 Commentblocksin Python
413 Commentblocksin VHDL
414 Commentblocksin Fortran e

Anatomy of a comment block

5 Additional Documentation

© © 0o N N

11
12
12
14
14
14
15
15
15
15
15

17
17
17
20
21
23
25
26
27
27

29

Generated by Doxygen 1.13.1

5.1 Custom Pages

5.2 Scaling Up

5.2.1
522

Automatically Adding Files

Side Panel Treeview

6 Markdown support

6.1 Standard Markdown

6.1.1
6.1.2
6.1.3
6.1.4
6.1.5
6.1.6
6.1.7
6.1.8
6.1.9

6.1.11

6.1.12 Automatic Linking

6.2 Markdown Extensions

6.2.1
6.2.2
6.2.3
6.2.4
6.2.5

6.3 Doxygen specifics

6.3.1
6.3.2
6.3.3
6.3.4
6.3.5
6.3.6
6.3.7
6.3.8
6.3.9

6.4 Debugging problems

7 Lists

Paragraphs,
Headers,
Blockquotes.,
Lists
CodeBlocks oL
Horizontal Rulers
Emphasis
Strikethrough oo
codespans
6.1.10 Links
InlineLinks
Reference Links

Images

TableofContents

Image Attributes

Including Markdown files as pages

Treatment of HTML blocks

Code Block Indentation

Emphasis and strikethrough limits
Code Spans Limits
Lists Extensions

Useofasterisks

Limits on markup scope

Support for GitHub Alerts

Generated by Doxygen 1.13.1

8 Grouping

8.1 TOPICS . . . o e e e e e
8.2 MemberGroups
8.3 Subpaging e

9 Including formulas

10 Including tables

11 Graphs and diagrams

12 Preprocessing

13 Automatic link generation

13.1 Linksto web pages and mail addresses
13.2 Linkstoclasses e
13.3 Linkstofiles e
13.4 Linkstofunctions e
13.5 Linkstoothermembers L
13.6 typedefs L e

14 Output Formats

15 Searching

15.1 External Indexingand Searching
15.1.1 Introduction e e e e

15.1.2 Configuring

Single projectindex L

Multi projectindex e

15.1.3 Updatingtheindex e e

15.1.4 Programminginterface
Indexerinputformat

Search URLformat e
Searchresultsformat

16 Customizing the output

16.1 MinorTweaks
16.1.1 Overall Color e
16.1.2 Navigation e e e e
16.1.3 Dynamic Content
16.1.4 Header, Footer, and Stylesheetchanges,

16.2 Changingthe layoutofpages e

16.3 Usingthe XML output o

47
47
49
50

53

55

57

61

65
65
65
65
66
66
68

69

71
73
73
74
75
75
76
76
76
77
77

Generated by Doxygen 1.13.1

v

17 Custom Commands 87
171 Simple aliases e 87
17.2 Aliases with arguments L e 87
17.3 Nesting customcommand 89
18 Linking to external documentation 91
19 Frequently Asked Questions 93
19.1 How to get information on the index page in HTML? 93
19.2 Help, some/all of the members of my class / file / namespace are not documented? 94
19.3 When | set EXTRACT_ALL to NO none of my functions are shown in the documentation. 94
19.4 My file with a custom extension is not parsed (properly) (anymore). 94
19.5 How can | make Doxygen ignore some code fragment? 95
19.6 How can | change what is after the #include in the class documentation? 95
19.7 How can | use tag files in combination with compressed HTML? 95
19.8 | don't like the quick index that is put above each HTML page, whatdo Ido? 96
19.9 The overall HTML output looks different, while | only wanted to use my own html header file 96
19.10 Why does Doxygenuse Qt? e e 96
19.11 How can | exclude all test directories from my directory tree? 96
19.12 Doxygen automatically generates a link to the class MyClass somewhere in the running text. How do |
prevent that at a certain place? L 96
19.13 My favorite programming language is X. Can | still use Doxygen? 97
19.14 Help! | get the cryptic message "input buffer overflow, can't enlarge buffer because scanner uses
REJECT" . . . o e 97
19.15 When running make in the latex directory | get "TeX capacity exceeded". Now what? 97
19.16 Why are dependencies via STL classes not shown inthe dot graphs? 97
19.17 | have problems getting the search engine to work with PHP5 and/or windows 97
19.18 Can | configure Doxygen from the command line? 98
19.19 How did Doxygengetitsname? 98
19.20 What was the reason to develop Doxygen? 98
19.21 Howto preventinterleaved output L 98
20 Troubleshooting 99
20.1 Known Problems e 99
20.2 HowtoHelp o e 100
20.3 Howtoreportabug 100
Il Reference Manual 103
21 Features 105
22 Doxygen usage 107

Generated by Doxygen 1.13.1

22.1 Fine-tuningtheoutput L 107
23 Doxywizard usage 109
231 Wizardtab o 110

23.1.1 Projectsettings 111

23.1.2 Modeofoperating e e e 112

23.1.3 OQutputtoproduce e e e e e e e 113

23.1.4 Diagramstogenerate e e e e 114
23.2 Experttab e 114
23.3 Runtab 117
23.4 Menuoptions L e 118

2341 Filemenu L 118

23.4.2 Settingsmenu e e e 119

23.43 Helpmenu e e e e 119
24 Configuration 121
241 Format 121
24.2 Project related configurationoptions Lo 124
24.3 Build related configurationoptions L 130
24.4 Configuration options related to warning and progress messages o oo 135
24.5 Configuration options related to the inputfiles L oo 136
24.6 Configuration options related to source browsing Lo 139
24.7 Configuration options related to the alphabetical classindex 141
24.8 Configuration options related to the HTML output 141
24.9 Configuration options related to the LaTeX output L. 153
24.10 Configuration options relatedtothe RTFoutput 158
24.11 Configuration options related to the man pageoutputo 158
24.12 Configuration options related to the XML outputo 159
24.13 Configuration options related to the DOCBOOK output 160
24.14 Configuration options for the AutoGen Definitions output 160
24.15 Configuration options related to Sqlite3 outputo L 160
24.16 Configuration options related to the Perl module output 160
24.17 Configuration options related to the preprocessor oL 161
24.18 Configuration options related to external referenceso 162
24.19 Configuration options related to diagram generatortools 163
2420 Examples e 168
25 Special Commands 171
25.1 Introduction L e e 171
25.2 \addtogroup <name> [(title)] L 173
25.3 N\callgraph 173

Generated by Doxygen 1.13.1

Vi

25.4

25.5

25.6

25.7

25.8

25.9

25.10
25.11
25.12
25.13
25.14
25.15
25.16
25.17
25.18
25.19
25.20
25.21
25.22
25.23
25.24
25.25
25.26
25.27
25.28
25.29
25.30
25.31
25.32
25.33
25.34
25.35
25.36
25.37
25.38
25.39
25.40
25.41
25.42
25.43

\hidecallgraph e 174
\callergraph e 174
\hidecallergraph e 174
\showrefby L e e 174
\hiderefby L 175
\showrefs L e e e e e 175
\hiderefs . . . L L 175
\showinlinesource L e e e e 175
\hideinlinesource L e e e e e e 175
\includegraph L e 176
\hideincludegraph e e e e e 176
\includedbygraph e e 176
\hideincludedbygraph e e e 176
\directorygraph L e 176
\hidedirectorygraph e e e e 176
\collaborationgraph L e 177
\hidecollaborationgraph L e 177
\inheritancegraph[{option}'] 177
\hideinheritancegraph e 177
\groupgraph e e e e e e e 177
\hidegroupgraph L e 177
\showenumvalues e e e e e 178
\hideenumvalues L e e e e e e 178
\qualifier <label> | "(text)" 178
\category <name> [<header-file>] [<header-name>] 178
\class <name> [<header-file>] [<header-name>], 178
\concept <nName>> L e e e e e e e 179
\def <name> L e 179
\defgroup <name> (group title) 179
\dir [<path fragment>]. 179
\enuUM <NaME>> L o e e e e e 179
\example['{lineno}] <file-name> 180
\endinternal e 181
\extends <name>> L e e e e e e 181
Mile [<name>] L e 181
\fileinfo['{'option}'] L e 181
\lineinfo e 182
\fn (function declaration) L e 182
\headerfile <header-file> [<header-name>] 182
\hideinitializer 183

Generated by Doxygen 1.13.1

25.44
25.45
25.46
25.47
25.48
25.49
25.50
25.51
25.52
25.53
25.54
25.55
25.56
25.57
25.58
25.59
25.60
25.61
25.62
25.63
25.64
25.65
25.66
25.67
25.68
25.69
25.70
25.71
25.72
25.73
25.74
25.75
25.76
25.77
25.78
25.79
25.80
25.81
25.82
25.83

\idlexcept <name> L L e e 183
\implements <name> L e e e e e 183
\ingroup (<groupname> [<groupname>>]*) o i e e e e e e e e 183
\interface <name> [<header-file>] [<header-name>] 184
\internal L e 184
\mainpage [(title)] e e e e e 184
\memberof <name>> L e e 184
\module <name> e e e e e 186
\name [(header)] L e e e e e 186
\namespace <NAME>> o v v it e e e e e e e e e e 186
\NOSUDGIOUPING o o e e e e e e e e 186
\overload [(function declaration)] L 186
\package <name>> e e e e e e e 187
\page <name> (title) 187
\private e e e e 188
\privatesection e 188
\property (qualified property name) 188
\protected L e e e e 188
\protectedsection e 188
\protocol <name> [<header-file>] [<header-name>] 189
\public . . L 189
\publicsection L e 189
\DUME . o o e e 189
\relates <name> L L e 189
\related <name> L e e e e 190
\relatesalso <name> e 190
\relatedalso <name> L e e e e 190
\showinitializer e 190
\static e e e e 190
\struct <name> [<header-file>] [<header-name>], 190
\typedef (typedef declaration) 190
\union <name> [<header-file>] [<header-name>] 191
\var (variable declaration) 191
\vhdlflow [(title for the flow chart)] 191
\weakgroup <name> [(title)] 191
\attention { attentiontext} L 191
\author { listof authors} e 191
\authors { listof authors '} 192
\brief { brief description} 192
\bug { bug description} e 192

Generated by Doxygen 1.13.1

Vil

25.84 \cond [(section-label)] L 192
25.85 \copyright { copyright description} L L 193
25.86 \date {datedescription} 193
25.87 \showdate "<format>"[<date_time>1]. 193
25.88 \deprecated {description} L 195
25.89 \details { detailed description} L 195
25.90 \noop (texttobeignored) 195
25.91 \raisewarning (textto be shownaswarning) Lo Lo 195
25.92 \else e 196
25.93 \elseif (section-label) L 196
25.94 \endcond L e e 196
25.95 \endif 196
25.96 \exception <exception-object> { exception description}o 196
25.97 \if (section-label) e e e 196
25.98 \ifnot (section-label) 197
25.99 \important { importanttext} 197
25.100\invariant { description of invariant} L L 198
25.101\note {text} L 198
25.102\par [(paragraph title)] { paragraph '} 198
25.103\param[<dir>] <parameter-name> { parameter description} 198
25.104\parblock e e 199
25.105\endparblock L e 199
25.106 \tparam <template-parameter-name> { description}o 199
25.107\post { description of the postcondition} 199
25.108\pre { description of the precondition} L 199
25.109\remark {remarktext} L 200
25.110\remarks {remarktext} L 200
25.111\result { description of the resultvalue} oL 200
25.112\return { description of the returnvalue } Lo 200
25.118\returns { description of the returnvalue '} L 200
25.114\retval <return value> {description} L 200
25115 \sa{references} L 200
25.116\see {references} 200
25.117\short { short description} 201
25.118\since {text} L e e 201
25.119\test { paragraph describingatestcase} L Lo 201
25.120\throw <exception-object> { exception description} oL 201
25.121 \throws <exception-object> { exception description} 201
25.122\todo { paragraph describing whatistobedone} oo oL 201
25.128\version { version number} L L 201

Generated by Doxygen 1.13.1

25.124\warning {warning message } e e 202
25.125\xrefitem <key> "heading" "listtitle" {text}o 202
25.126\addindex (text) e e 202
25.127\anchor <word> L L e e 202
25.128\cite <label> 203
25.129\endlink . . . L L L L 203
25.130\link <link-object> L 203
25.131\ref <name> ["(text)"] e 203
25.132\refitem <name> L L L 203
25.133\secreflist e 203
25.134\endsecreflist L e 203
25.135\subpage <name> ["(text)"] e 204
25.136 \tableofcontents['{'[option[:level]][,option[:level]]«"}] oo 204
25.137\section <section-name> (sectiontitle) L L L 204
25.138\subsection <subsection-name> (subsectiontitle)o Lo 205
25.139\subsubsection <subsubsection-name> (subsubsectiontitle) 205
25.140\paragraph <paragraph-name> (paragraphtitle) oL 205
25.141\subparagraph <subparagraph-name> (subparagraphtitle) 205
25.142\subsubparagraph <subsubparagraph-name> (subsubparagraphtitle) 205
25.143\dontinclude['{lineno}] <file-name> 206
25.144\include[{'option'}] <file-name> L 206
25.145\includelineno <file-name> L L L 207
25.146\includedoc[{'option'}'] <file-name> L 207
25.147\line (pattern) o e e e 208
25.148\skip (pattern) L e e e 208
25.149\skipline (pattern) e e 208
25.150\snippet[{'option}'] <file-name> (block_id) 208
25.151\snippetlineno <file-name> (block id) 209
25.152\snippetdoc['{'option'}] <file-name> (block_id) Lo 209
25.153\until (pattern) L 209
25.154\verbinclude <file-name> L L 210
25.155\htmlinclude['[block]] <file-name> Lo 210
25.156\latexinclude <file-name> L 210
25.157\rtfinclude <file-name> Lo 210
25.158\maninclude <file-name> L L 210
25.159\docbookinclude <file-name> L L 211
25.160\xmlinclude <file-name> 211
25.161\a <WOrd>> o e e 211
25.162\arg { item-description } L 211
25163\ <word> . . . L L 212

Generated by Doxygen 1.13.1

25.164\C <WOrd> L e e e 212
25.165\codel'{'<word>"1'] L L e e 212
25.166\copydoc <link-object> L L 213
25.167\copybrief <link-object> L 213
25.168\copydetails <link-object™> 213
25.169\docbookonly L 213
25.170\dot ["caption"] [<sizeindication>=<size>]o 213
25.171\emoji "name” . . . L L e e 214
25.172\msc ["caption"] [<sizeindication>=<size>] e 214
25.173\startuml ['{'option[,option]'}] ['caption"] [<sizeindication>=<size>] 215
25.174\dotfile <file> ["caption"] [<sizeindication>=<size>] 216
25.175\mscfile <file> ["caption"] [<sizeindication>=<size>] oL 216
25.176\diafile <file> ["caption"] [<sizeindication>=<size>] 217
25.177\doxyconfig <config_option> 217
25178\ KWOIrd>> o e e e 217
25.179\em <WOrd>> e e e e e e e e e e 217
25.180\endcode L L e 218
25.181\enddocbookonly L 218
25.182\enddot . . . L L L 218
25.183\endmSC L e 218
25.184\enduml . . L L 218
25.185\plantumlfile <file> ["caption"] [<sizeindication>=<size>] 218
25.186\endhtmlonly L 218
25.187\endlatexonly L L e e 218
25.188\endmanonly L e 219
25.189\endrtfonly e 219
25.190\endverbatim L L L 219
25.191\endxmlonlyo e e 219
25.192\8 . L 219
25 193N (. . . e e e 219
25.194N1) . L L 219
25 105\ . . . e e e 220
25.196\f] . . . 220
25.197\environment}{ L L e 220
25.198\f} . . L 220
25.199\htmlonly['[block]'] L 220
25.200\image['{'option[,option]'}'] <format> <file> ["caption"] [<sizeindication>=<size>]. 221
25.201\atexonlyo e e 221
25.202\manonly oL e e e e e e 222
25.203\li {item-description } L e 222

Generated by Doxygen 1.13.1

Xi

25.204\N . . L 222
25.205\p KWOA>> . . . o o o e e e e e e e e e e 222
25.206\rtfonly . . . oL L e 223
25.207\verbatim L e 223
25.208\xmlonly . . . oL L e e 223
25.209\\ L Lo 223
25.210\N@ e e 223
25.211\~[Languageld] 223
25212 \& . . L e 224
25 213\ . . 224
25214MF . . L L e e 224
25215\ . 224
25.216\> . . 224
25.217\% o o i 224
25 218\ L L 224
25 2100\, L e 224
25.220\7 . L L 224
25221\ e 224
25.222\= . . . 224
25, 223\ L L e 225
25.224\| .. L 225
25,225 - . L 225
25, 226 \-- . L e e 225
26 HTML Commands 227
26.1 HTMLtagcommands o i i e e 227
26.2 HTML4 characterentities 228
27 XML Commands 235
28 Emoji support 237
28.1 Representation L e e 237
28.2 Emojiimageretrieval 237
Il Developers Manual 239
29 Internationalization 241
30 Perl Module Output 247
30.1 Usage e 247
30.2 Usingthe LaTeX generator. o . i i i 247

30.2.1 Creationof PDFand DVloutput. 248

Generated by Doxygen 1.13.1

Xi

30.3 Documentation format. e 248
30.4 Datastructure e 249
30.5 PerlModule Tree Nodes o 0 e 249
31 Doxygen's Internals 255
Appendices 259

A Autolink Example 261
AA Class Documentation e 261
A.1.1 Autolink_Test Class Reference 261
Detailed Description e e 261

Member Enumeration Documentation L L oL 262

Constructor & Destructor Documentation. 262

Member Function Documentation 262

A2 File Documentation L 262
A2.1 autolinkcpp File Reference 262
Detailed Description L 263

Macro Definition Documentation L 263

Typedef Documentation L 263

Enumeration Type Documentation L 263

Variable Documentation 264

B Resolving Typedef Example 265
B.1 Class Documentation 265
B.1.1 CoordStruct Struct Reference 265
Detailed Description 265

Member Data Documentation. 265

B.2 File Documentation e e e e e 265
B.2.1 restypedef.cpp File Reference 265
Detailed Description e 266

Typedef Documentation 266

Function Documentation 266

C Diagrams Example 267
C.1 Class Documentation o 267
C.1.1 AClassReference 267
Member Data Documentation. 268

C.1.2 BClassReference 268
Member Data Documentation. 268

C.1.3 CClassReference 269

Generated by Doxygen 1.13.1

Member Data Documentation. 269

C.1.4 DClassReference 270
Member Data Documentation. L 271

C.1.5 ECIlassReference 271

C.2 FileDocumentation e 273
C.2.1 diagrams_a.hFile Reference 273

C.2.2 diagrams_ah 273

C.2.3 diagrams_b.h FileReference 273

C.24 diagrams_b.h 274

C.2.5 diagrams_c.h FileReference 274

C.2.6 diagrams_c.h 274

C.2.7 diagrams_d.h File Reference 274

C.2.8 diagrams_d.h 275

C.2.9 diagrams_e.h FileReference L 276
C.2.10 diagrams_e.h e 276

D Grouping Example 277
D.1 Topic Documentation L e e e e e 277
D11 The FirstGroup o o e 277
Detailed Description 277

D.1.2 The Second Group o v v v it e e e e e 277
Detailed Description 278

D.1.3 TheThirdGroup o 278
Detailed Description 278

The FourthGroup o 278

D.1.4 TheFifthGroup 278

D.2 Namespace Documentation e 279
D.2.1 N1 Namespace Reference 279
Detailed Description 279

D.3 Class Documentation e 279
D.3.1 CiClassReference e 279
Detailed Description L 279

D.3.2 C2ClassReference e 279
Detailed Description 279

D.3.3 C3ClassReference e 279
Detailed Description 279

D.3.4 C4ClassReference e 279
Detailed Description e 280

D.3.5 C5ClassReference e 280
Detailed Description 280

Generated by Doxygen 1.13.1

Xiv

D.4 File Documentation e e 280
D.4.1 group.cpp File Reference 280
Detailed Description e 280

E Member Groups Example 281
E.A Class Documentation e 281
E.1.1 Memgrp_TestClass Reference 281
Detailed Description 281

Member Function Documentation L 281

E.2 File Documentation e 282
E.2.1 memgrp.cpp File Reference 282
Detailed Description e 282

Macro Definition Documentation L 282

Function Documentation L 282

F Style Examples 283
FA After Block Example e e e 283
F1.1 Class Documentation L 283
Afterdoc_Test Class Reference ..o 283

F1.2 File Documentation L 284
afterdoc.h L 284

F2 QT StyleExample e 284
F2.1 Class Documentation e 284
QTstyle_Test Class Reference ... 284

F.3 Javadoc Style Example L 286
F.3.1 Class Documentation 286
Javadoc TestClass Reference 286

F.4 Javadoc Banner Example 288
F4.1 File Documentation L 288
javadoc-banner.h File Reference L 288
javadoc-bannerh L 289

G Structural Commands Example 291
G.1 File Documentation e 291
G.1.1 structemd.h File Reference 291
Detailed Description 291

Macro Definition Documentation L 291

Typedef Documentation 292

Function Documentation L 292

Variable Documentation 293

G.1.2 structemd.h . . L e e e 293

Generated by Doxygen 1.13.1

XV

H Language Examples 295
H.A Python Docstring Example o 295
H.1.1 Namespace Documentation 295
docstring Namespace Reference Lo oL 295

H.1.2 Class Documentation e 295
docstring.PyClass Class Reference 295

H.1.3 File Documentation L 296
docstring.py File Reference 296

H.2 Python Example e e e 296
H.2.1 Namespace Documentation 296
pyexample Namespace Reference L. 296

H.2.2 Class Documentation e 297
pyexample.PyClass Class Reference 297

H.3 VHDL Example e e e 297
H.3.1 Design Unit Documentation 297
mux_using_with Entity Reference o o 297
mux_using_with.behavior Architecture Reference 298

H.3.2 File Documentation L 298
mux.vhdl File Reference 298

I Class Example 299
1.1 Class Documentation e 299
1.1 TestClass Reference e 299
Detailed Description 299

1.2 File Documentation 299
2.1 class.h 299

J Define Example 301
J.1 File Documentation 301
J. 1.1 defineh FileReference 301
Detailed Description 301

Macro Definition Documentation L Lo 301

J1.2 define.h . . . e 302

K Enum Example 303
K.1 Class Documentation L e 303
K.1.1 Enum_TestClass Reference . e 303
Detailed Description 303

Member Enumeration Documentation L oo 303

K.2 File Documentation e e e e 304
K21 enum.h o o e e 304

Generated by Doxygen 1.13.1

XVI

L Example Example 305
L.1 Class Documentation L 305
L.1.1 Example_TestClass Reference 305
Detailed Description 305

Member Function Documentation 305

L.2 Examples 305
L.2.1 example_test.cppo 305

M Extends/Implements Example 307
M.1 Class Documentation e 307
M.1.1 CarStruct Reference e 307
Detailed Description e 307

M.1.2 Object Struct Reference 308
Detailed Description 308

Member Function Documentation 308

M.1.8 Truck Struct Reference L 308
Detailed Description 309

M.1.4 Vehicle Struct Reference 309
Detailed Description e e 310

Member Function Documentation 310

M.2 File Documentation e 310
M.2.1 manual.c File Reference L 310
Function Documentation 310

N File Example 311
N.1 File Documentation 311
N.1.1 file.h File Reference o 311
Detailed Description e 311

Variable Documentation 311

N.1.2 fileh .o e 311

O Fn Example 313
0.1 Class Documentation e 313
O.1.1 Fn_TestClass Reference e 313
Detailed Description 313

Member Function Documentation 313

0.2 File Documentation L e e 314
0.21 func.h . . o e 314

P Overload Example 315
P Class Documentation L 315

Generated by Doxygen 1.13.1

XVIl

P1.1 Overload TestClass Reference 315
Detailed Description 315

Member Function Documentation 315

Q Page Example 317
Q.1 Adocumentation page e e e 317
Q.1.1 Anexample section e 317
Thefirst subsection L 317

The second subsection 317

Q.2 Anotherpage o e 317
R Relates Example 319
R.1 Class Documentation e e 319
R.1.1 String Class Reference e 319
Detailed Description e 319

Friends And Related Symbol Documentation. 319

S Author Example 321
S.A Bug List e 321
S.2 Class Documentation e 321
S.2.1 SomeNiceClass Class Reference 321
Detailed Description 321

T Par Example 323
TA Class Documentation L 323
T1.1 Par_TestClassReference i i e 323
Detailed Description e 323

U Include Example 325
U1 pag_example L e 325
U.2 Class Documentation e e e e e 325
U.2.1 Include TestClass Reference. i 325
Detailed Description L 325

Generated by Doxygen 1.13.1

Part |

User Manual

Chapter 1

Introduction

Introduction

Doxygen is the de facto standard tool for generating documentation from annotated C++ sources, but it also supports
other popular programming languages such as C, Objective-C, C#, PHP, Java, Python, IDL (Corba, Microsoft, and
UNO/OpenOiffice flavors), Fortran, and to some extent D. Doxygen also supports the hardware description language
VHDL.

Doxygen can help you in three ways:

1. It can generate an on-line documentation browser (in HTML) and/or an off-line reference manual (in IATgX)
from a set of documented source files. There is also support for generating output in RTF (MS-Word), Post«
Script, hyperlinked PDF, compressed HTML, and Unix man pages. The documentation is extracted directly
from the sources, which makes it much easier to keep the documentation consistent with the source code.

2. You can configure Doxygen to extract the code structure from undocumented source files. This is very useful
to quickly find your way in large source distributions. Doxygen can also visualize the relations between the
various elements by means of include dependency graphs, inheritance diagrams, and collaboration diagrams,
which are all generated automatically.

3. You can also use Doxygen for creating normal documentation (as | did for the Doxygen user manual and

web-site).

Doxygen is developed under macOS and Linux, but is set-up to be highly portable. As a result, it runs on most other
Unix flavors as well. Furthermore, executables for Windows are available.

This manual is divided into three parts, each of which is divided into several sections.

The first part forms a user manual:

« Section Installation discusses how to download, compile and install Doxygen for your platform.
+ Section Getting started tells you how to generate your first piece of documentation quickly.

« Section Documenting the code demonstrates the various ways that code can be documented.

+ Section Markdown support show the Markdown formatting supported by Doxygen.

+ Section Lists shows how to create lists.

» Section Grouping shows how to group things together.

« Section Including tables shows how to insert tables in the documentation.

« Section Including formulas shows how to insert formulas in the documentation.

+ Section Graphs and diagrams describes the diagrams and graphs that Doxygen can generate.

Generated by Doxygen 1.13.1

https://www.doxygen.org/download.html

4 Introduction

 Section Preprocessing explains how Doxygen deals with macro definitions.

» Section Automatic link generation shows how to put links to files, classes, and members in the documentation.
« Section Output Formats shows how to generate the various output formats supported by Doxygen.

» Section Searching shows various ways to search in the HTML documentation.

 Section External Indexing and Searching shows how use the external search and index tools

» Section Additional Documentation explains how you can create non-api related documentation pages.
 Section Customizing the output explains how you can customize the output generated by Doxygen.

+ Section Custom Commands show how to define and use custom commands in your comments.

+ Section Linking to external documentation explains how to let Doxygen create links to externally generated
documentation.

« Section Frequently Asked Questions gives answers to frequently asked questions.

+ Section Troubleshooting tells you what to do when you have problems.

The second part forms a reference manual:

+ Section Features presents an overview of what Doxygen can do.

» Section Doxygen usage shows how to use the doxygen program.

+ Section Doxywizard usage shows how to use the doxywizard program.

 Section Configuration shows how to fine-tune Doxygen, so it generates the documentation you want.

« Section Special Commands shows an overview of the special commands that can be used within the docu-
mentation.

e Section HTML Commands shows an overview of the HTML commands that can be used within the documen-
tation.

» Section XML Commands shows an overview of the C# style XML commands that can be used within the
documentation.

+ Section Emoji support shows an introduction how emoji can be used within the documentation.
The third part provides information for developers:

» Section Doxygen's Internals gives a global overview of how Doxygen is internally structured.
+ Section Perl Module Output shows how to use the PerlMod output.

+ Section Internationalization explains how to add support for new output languages.

Doxygen license

Copyright © 1997-2025by Dimitri wvan Heesch.

Permission to use, copy, modify, and distribute this software and its documentation under the terms of the GNU
General Public License is hereby granted. No representations are made about the suitability of this software for any
purpose. |t is provided "as is" without express or implied warranty. Seethe GNU General Public License
for more details.

Documents produced by Doxygen are derivative works derived from the input used in their production; they are not
affected by this license.

Generated by Doxygen 1.13.1

mailto:doxygen@gmail.com
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html

User examples

Doxygen supports a number of output formats where HTML is the most popular one. I've gathered some nice
examples of real-life projects using Doxygen.

These are part of a larger 1ist of projects that use Doxygen. If you know other projects, let me know
and I'll add them.

Future work

Although Doxygen is successfully used by large number of companies and open source projects already, there is
always room for improvement.

You can also submit enhancement requests in the bug tracker.

Acknowledgments
Thanks go to:

» Malte Zéckler and Roland Wunderling, authors of DOC++. The first version of Doxygen borrowed some code
of an old version of DOC++. Although | have rewritten practically all code since then, DOC++ has still given
me a good start in writing Doxygen.

+ All people at Qt Software, for creating a beautiful GUI Toolkit.

+ Steffen Schiimann for creating ghc::filesystem which is used by Doxygen.

» Michael McTernan for creating mscgen which is now embedded in Doxygen.

» My brother Frank for rendering the logos.

» Harm van der Heijden for adding HTML help support.

» Wouter Slegers for registering the www.doxygen.org domain.

» Martin Kreis for adding VHDL support.

» Parker Waechter for adding the RTF output generator.

» Joerg Baumann, for adding conditional documentation blocks, PDF links, and the configuration generator.

» Tim Mensch for adding the todo command.

Christian Hammond for redesigning the web-site.

+ Ken Wong for providing the HTML tree view code.

Talin for adding support for C# style comments with XML markup.

Petr Prikryl for coordinating the internationalization support. All language maintainers for providing transla-
tions into many languages.

» many, many others for suggestions, patches and bug reports.

Generated by Doxygen 1.13.1

https://www.doxygen.org/results.html
https://www.doxygen.org/results.html
https://www.doxygen.org/projects.html
mailto:doxygen@gmail.com?subject=New%20project%20using%20Doxygen
https://github.com/doxygen/doxygen/issues

Introduction

Generated by Doxygen 1.13.1

Chapter 2

Installation

2.1
2.2
2.3
2.4

Compiling fromsource on UNIX o o oo
Installing the binarieson UNIX

Compiling from source on Windows L

© © o0 N

Installing the binarieson Windows

First go to the download page to get the latest distribution, if you have not downloaded Doxygen already.

2.1

Compiling from source on UNIX

If you downloaded the source distribution, you need at least the following to build the executable:

« The GNUtools flex,bison, libiconv and GNU make
* You need python (version 2.7 or higher, see https://www.python.org).

* In order to generate a Makefile for your platform, you need cmake version 3.14 or later.

To take full advantage of Doxygen's features the following additional tools should be installed.

« Qt Software's GUI toolkit Ot version 5.14 or higher (including Qt 6). This is needed to build the GUI front-end
Doxywizard.

« A IATeX distribution: forinstance TeX Live Thisis needed for generating IATEX, Postscript, and PDF output.

* the Graph visualization toolkit version 2.38 or higher Needed for the include
dependency graphs, the graphical inheritance graphs, and the collaboration graphs. If you compile graphviz
yourself, make sure you do include freetype support (which requires the freetype library and header files),
otherwise the graphs will not render proper text labels.

* For formulas in the HTML output (when MathJax is not used) or in case you do not wish to use pdflatex,
the ghostscript interpreter is needed. You can finditat www.ghostscript.com.

Compilation is now done by performing the following steps:

. Unpack the archive, unless you already have done that:

gunzip doxygen-$VERSION.src.tar.gz # uncompress the archive
tar xf doxygen-$VERSION.src.tar # unpack it

Create a build directory (for instance inside the source tree)

Generated by Doxygen 1.13.1

https://www.doxygen.org/download.html
ftp://prep.ai.mit.edu/pub/gnu/
https://www.python.org
https://cmake.org/
https://doc.qt.io/
https://tug.org/interest.html#free
https://www.graphviz.org/
https://www.ghostscript.com/

Installation

2.2

cd doxygen—-$VERSION
mkdir build
cd build

. Run cmake with the makefile generator

cmake -G "Unix Makefiles"

cmake tries to determine the platform you use, and will look for the requires tools. It will report if something
is missing.

If you have Qt-5.14 or higher installed and want to build the GUI front-end, you should enable it as follows:
cmake -Dbuild_wizard=YES ..
For an overview of other configuration options use

cmake -L ..

. Compile the program by running make:

make

The program should compile without problems and the binaries (doxygen and optionally doxywizard)
should be available in the bin directory within the build directory.

. Optional: Generate the user manual.

cmake -Dbuild_doc=YES ..
make docs

To let Doxygen generate the HTML and PDF documentation.

The HTML directory within the build directory will now contain the html documentation (just point a HTML
browser to the file index.html in the html directory).

. Optional: static linking

If you want to build a statically linked version of Doxygen that embeds libclang you need to first build LLVM
and clang from sources using the following options:

cmake -DLIBCLANG_BUILD_STATIC=ON \
-DBUILD_SHARED_LIBS=0FF \
-DLLVM_ENABLE_PIC=0FF \
-DLLVM_BUILD_LLVM_DYLIB=OFF \
-DLLVM_BUILD_LLVM_C_DYLIB=OFF \
-DLLVM_ENABLE_TERMINFO=0FF \
path_to_llvm_root_source_dir

and then build Doxygen with these options:

cmake -DCMAKE_BUILD_TYPE=Release \
"-DCMAKE_FIND_LIBRARY_SUFFIXES=.a" \
"-1d1l;-1z; -1lpthread" \
-Duse_libclang=YES \
path_to_doxygen_root_source_dir

Installing the binaries on UNIX

After the compilation of the source code do a make install to install Doxygen. If you downloaded the binary
distribution for Linux, type:

make install

Binaries are installed into the directory /usr/local/bin, man pagesin /usr/local/man/manl and doc-
umentation in /usr/local/doc/doxygen To change this just edit the Makefile.

Generated by Doxygen 1.13.1

2.3 Compiling from source on Windows 9

Note

You need the GNU install tool for this to work (it is part of the coreutils package). Other install tools may put
the binaries in the wrong directory!

If you have a RPM or DEB package, then please follow the standard installation procedure that is required for these
packages.

2.3 Compiling from source on Windows

From version 1.8.10 onwards, build files need to be generated by cmake. cmake can be downloaded from
https://cmake.org/download/

At the moment only the community version of Visual Studio 2019 is tested, but other version might also work.
Alternatively, you can compile Doxygen the UNIX way using Cygwin or MinGW.

The next step is to install modern versions of bison and flex (see https://sourceforge.«
net/projects/winflexbison/. Afterinstallation and adding them to your path rename win_flex.exe
to flex.exe and win_bison.exe to bison.exe) Furthermore you have to install python (version 2.7 or
higher, see https://www.python.org). These packages are needed during the compilation process.

Download Doxygen's source tarball and put it somewhere (e.g. use c: \tools)
Now start a visual studio native command shell (for either x86 or x64) and type

cd c:\tools
tar zxvf doxygen-x.y.z.src.tar.gz

to unpack the sources (you can obtain tar from e.g. https://gnuwin32.sourceforge.«
net/packages.html). Alternatively you can use an unpack program, like 7-Zip (see https://www.«
7-zip.org/) or use the built-in unpack feature of modern Windows systems).

Now your environment is setup to generate the required project files for Doxygen.
change directory to the doxygen—x.y . z directory, create and change to a build directory
mkdir build

cd build
cmake -G "Visual Studio 14 2015" ..

This will create a project file then can be opened in Visual Studio.

If you prefer compiling from the command prompt you can use the following instead:

mkdir build

cd build
cmake -G "NMake Makefiles" ..
nmake

Note that compiling Doxywizard requires Qt 5.14 or newer (see https://doc.gt.io/).

Also read the next section for additional tools you may need to install to run Doxygen with certain features enabled.

2.4 Installing the binaries on Windows

Doxygen comes as a self-installing archive, so installation is extremely simple. Just follow the dialogs.

After installation it is recommended to also download and install GraphViz (version 2.38 or better is highly recom-
mended). Doxygen can use the dot tool of the GraphViz package to render nicer diagrams, see the HAVE_DOT
option in the configuration file.

Generated by Doxygen 1.13.1

https://cmake.org/download/
https://cmake.org/download/
https://en.wikipedia.org/wiki/Cygwin
https://www.mingw-w64.org/
https://sourceforge.net/projects/winflexbison/
https://sourceforge.net/projects/winflexbison/
https://www.python.org
https://gnuwin32.sourceforge.net/packages.html
https://gnuwin32.sourceforge.net/packages.html
https://www.7-zip.org/
https://www.7-zip.org/
https://doc.qt.io/

10 Installation

If you want to produce compressed HTML files (see GENERATE_HTMLHELP) in the configuration file, then you
need the Microsoft HTML help workshop. In the beginning of 2021 Microsoft took the original page, with a.o. the
download links, offline the HTML help workshop was already many years in maintenance mode). You can download
the HTML help workshop from the web archives at Installation executable.

If you want to produce Qt Compressed Help files (see QHG_LOCATION) in the configuration file, then you need
ghelpgenerator which is part of Qt. You can download Qt from 0Ot Software Downloads.

In order to generate PDF output or use scientific formulas you will also need to install LaTeX and
Ghostscript.

For IATEX a number of distributions exists. Popular ones that should work with Doxygen are MikTex and pro«
TeXt.

Ghostscript can be downloaded from Sourceforge.

After installing IATEX and Ghostscript you'll need to make sure the tools latex.exe, pdflatex.exe, and gswin32c.exe
(or gswin64c.exe) are present in the search path of a command box. Follow these instructions if you are unsure
and run the commands from a command box to verify it works.

Generated by Doxygen 1.13.1

http://web.archive.org/web/20160201063255/http://download.microsoft.com/download/0/A/9/0A939EF6-E31C-430F-A3DF-DFAE7960D564/htmlhelp.exe
https://www.qt.io/download
https://en.wikipedia.org/wiki/LaTeX
https://en.wikipedia.org/wiki/Ghostscript
https://en.wikipedia.org/wiki/Ghostscript
https://miktex.org/
https://www.tug.org/protext/
https://www.tug.org/protext/
https://sourceforge.net/projects/ghostscript/
https://www.computerhope.com/issues/ch000549.htm

Chapter 3

Getting started

3.1
3.2
3.3

3.4

Step 0: Check if Doxygen supports your programming/hardware description language 12
Step 1: Creating a configurationfile 12
Step 2: Running Doxygen 14
3.3.1 HTMLoutput o e e 14
3.3.2 LaTeXoutput e e e e 14
3.3.3 RTFoutput o e e e e e e 15
3.3.4 XMLoutput e e e e 15
3.35 Manpageoutput L e e e e e 15
3.3.6 DocBookoutput e 15
Step 3: Documentingthe sources 15

The executable doxygen is the main program that parses the sources and generates the documentation. See
section Doxygen usage for more detailed usage information.

Optionally, the executable doxywizard can be used, which is a graphical front-end for editing the configuration
file that is used by Doxygen and for running Doxygen in a graphical environment. For macOS Doxywizard will be
started by clicking on the Doxygen application icon.

The following figure shows the relation between the tools and the flow of information between them (it looks complex
but that's only because it tries to be complete):

Generated by Doxygen 1.13.1

12 Getting started

.
Doxywizard E Your application custom
d output
rea ;
generate/edit XML files doxmlparser lib | |
Config file]
Layout file Doxyfile
make ps postscript
fil
generate generate Latex files latex
read update + R
Makefile make pdf PDF
read |H
Sources Doxygen
j read
read generate
Man pages
Custom pag
— headers i
— footers Tag file(s) (. e ‘
— images |||/ ! ‘Windows only !
I~ I I
I I
import | doc
refman.rtf T MS-Word .
I I
HTML read | chm -,
pages ! HTML Help Workshop — 3

Figure 3.1: Doxygen information flow

3.1 Step 0: Check if Doxygen supports your programming/hardware
description language

First, assure that your programming/hardware description language has a reasonable chance of being recognized
by Doxygen. These programming languages are supported by default: C, C++, Lex, C#, Objective-C, IDL, Java,
PHP, Python, Fortran and D. Doxygen also supports the hardware description language VHDL by default. It is
possible to configure certain file type extensions to use certain parsers: see the Configuration/ExtensionMappings
for details. Also, completely different languages can be supported by using preprocessor programs: see the
Helpers page for details.

3.2 Step 1: Creating a configuration file

Doxygen uses a configuration file to determine all of its settings. Each project should get its own configuration file.
A project can consist of a single source file, but can also be an entire source tree that is recursively scanned.

To simplify the creation of a configuration file, Doxygen can create a template configuration file for you. To do this
call doxygen from the command line with the —g option:

doxygen —-g <config-file>

where <config-file> is the name of the configuration file. If you omit the file name, a file named Doxyfile will
be created. If a file with the name <config-file> already exists, Doxygen will rename it to <config-file>.bak before

Generated by Doxygen 1.13.1

https://www.doxygen.org/helpers.html
https://www.doxygen.org/helpers.html

3.2 Step 1: Creating a configuration file 13

generating the configuration template. If you use — (i.e. the minus sign) as the file name then Doxygen will try to
read the configuration file from standard input (st din), which can be useful for scripting.

The configuration file has a format that is similar to that of a (simple) Makefile. It consists of a number of assignments
(tags) of the form:

TAGNAME = VALUE or
TAGNAME VALUE1l VALUE2

You can probably leave the values of most tags in a generated template configuration file to their default value. See
section Configuration for more details about the configuration file.

If you do not wish to edit the configuration file with a text editor, you should have a look at Doxywizard, which is a
GUI front-end that can create, read and write Doxygen configuration files, and allows setting configuration options
by entering them via dialogs.

For a small project consisting of a few C and/or C++ source and header files, you can leave INPUT tag empty and
Doxygen will search for sources in the current directory.

If you have a larger project consisting of a source directory or tree you should assign the root directory or directories
to the INPUT tag, and add one or more file patterns to the FILE_PATTERNS tag (for instance *.cpp *.h). Only
files that match one of the patterns will be parsed (if the patterns are omitted a list of typical patterns is used for the
types of files Doxygen supports). For recursive parsing of a source tree you must set the RECURSIVE tag to YES.
To further fine-tune the list of files that is parsed the EXCLUDE and EXCLUDE_PATTERNS tags can be used. To
omit all test directories from a source tree for instance, one could use:

EXCLUDE_PATTERNS = */test/x*

Doxygen looks at the file's extension to determine how to parse a file, using the following table:

Extension | Language | Extension | Language | Extension | Language
.dox | C/C++ HH | C/C++ .py | Python
.doc | C/C++ .hxx | C/C++ .pyw | Python

.c | C/C++ .hpp | C/C++ .f | Fortran
.cc | C/C++ .h++ | C/C++ for | Fortran
cxx | C/C++ .mm | C/C++ .f90 | Fortran
.cpp | C/C++ xt | C/C++ .fo5 | Fortran
C++ | C/C++ .dl | IDL .f03 | Fortran
.cppm | C/C++ .ddl | IDL .fo8 | Fortran
.ccm | C/C++ .odl | IDL .f18 | Fortran
.cxxm | C/C++ Jjava | Java .vhd | VHDL
.c++m | C/C++ .cs | C# .vhdl | VHDL
di | C/C++ d|D .ucf | VHDL
dixx | C/C++ .php | PHP .gqsf | VHDL
dpp | C/C++ .php4 | PHP 1| Lex
d++ | C/C++ .php5 | PHP .md | Markdown
inl | C/C++ .inc | PHP .markdown | Markdown
.h | C/C++ .phtml | PHP .ice | Slice
H | C/C++ .m | Objective-C
.hh | C/C++ .M | Objective-C

Please note that the above list might contain more items than that by default set in the FILE_PATTERNS.

Any extension that is not parsed can be set by adding it to FILE_PATTERNS and when the appropriate
EXTENSION_MAPPING is set.

If you start using Doxygen for an existing project (thus without any documentation that Doxygen is aware of), you
can still get an idea of what the structure is and how the documented result would look like. To do so, you must set

Generated by Doxygen 1.13.1

14 Getting started

the EXTRACT_ALL tag in the configuration file to YES. Then, Doxygen will pretend everything in your sources is
documented. Please note that as a consequence warnings about undocumented members will not be generated
as long as EXTRACT_ALL is setto YES.

To analyze an existing piece of software it is useful to cross-reference a (documented) entity with its definition in the
source files. Doxygen will generate such cross-references if you set the SOURCE_BROWSER tag to YES. It can
also include the sources directly into the documentation by setting INLINE_SOURCES to YES (this can be handy
for code reviews for instance).

3.3 Step 2: Running Doxygen

To generate the documentation you can now enter:

doxygen <config-file>

Depending on your settings Doxygen will create html, rt £, latex, xml, man, and/or docbook directories inside
the output directory. As the names suggest these directories contain the generated documentation in HTML, RTF,
IATEX, XML, Unix-Man page, and DocBook format.

The default output directory is the directory in which doxygen is started. The root directory to which the output is
written can be changed using the OUTPUT_DIRECTORY. The format specific directory within the output directory
can be selected using the HTML_OUTPUT, RTF_OUTPUT, LATEX_OUTPUT, XML_OUTPUT, MAN_OUTPUT,
and DOCBOOK_OUTPUT. tags of the configuration file. If the output directory does not exist, doxygen will try to
create it for you (but it will not try to create a whole path recursively, like mkdir -p does).

3.3.1 HTML output

The generated HTML documentation can be viewed by pointing a HTML browser to the index.html file in the
html directory. For the best results a browser that supports cascading style sheets (CSS) should be used (I'm
using Mozilla Firefox, Google Chrome, Safari, and sometimes IE8, IE9, and Opera to test the generated output).

Some of the features the HTML section (such as GENERATE_TREEVIEW or the search engine) require a browser
that supports Dynamic HTML and JavaScript enabled.

3.3.2 LaTeX output

The generated IATEX documentation must first be compiled by a IATEX compiler (I use a recent teTeX distribution for
Linux and macOS and MikTex for Windows). To simplify the process of compiling the generated documentation,
doxygen writes a Makefile into the latex directory (on the Windows platform also a make . bat batch file is
generated).

The contents and targets in the Makefi1le depend on the setting of USE_PDFLATEX. If it is disabled (set to NO),
then typing make in the latex directory a dvi file called refman .dvi will be generated. This file can then be
viewed using xdvi or converted into a PostScript file re fman . ps by typing make ps (this requires dvips).

To put 2 pages on one physical page use make ps_2onl instead. The resulting PostScript file can be send to a
PostScript printer. If you do not have a PostScript printer, you can try to use ghostscript to convert PostScript into
something your printer understands.

Conversion to PDF is also possible if you have installed the ghostscript interpreter; just type make pdf (or make
pdf_2onl).

To get the best results for PDF output you should set the PDF_HYPERLINKS and USE_PDFLATEX tags to YES. In
this case the Makefile will only contain a target to build re fman . pdf directly.

Generated by Doxygen 1.13.1

3.4 Step 3: Documenting the sources 15

3.3.3 RTF output

Doxygen combines the RTF output to a single file called refman.rif. This file is optimized for importing into the
Microsoft Word. Certain information is encoded using so called fields. To show the actual value you need to select
all (Edit - select all) and then toggle fields (right click and select the option from the drop down menu).

3.3.4 XML output

The XML output consists of a structured "dump" of the information gathered by Doxygen. Each compound (class/-
namespace/file/...) has its own XML file and there is also an index file called index.xml.

A file called combine.xs1t XSLT script is also generated and can be used to combine all XML files into a single
file.

Doxygen also generates two XML schema files index.xsd (for the index file) and compound. xsd (for the
compound files). This schema file describes the possible elements, their attributes and how they are structured, i.e.
it the describes the grammar of the XML files and can be used for validation or to steer XSLT scripts.

In the addon/doxmlparser directory you can find a parser library for reading the XML output pro-
duced by Doxygen in an incremental way (see addon/doxmlparser/doxmparser/index.py and
addon/doxmlparser/doxmlparser/compound.py for the interface of the library)

3.3.5 Man page output

The generated man pages can be viewed using the man program. You do need to make sure the man directory is
in the man path (see the MANPATH environment variable). Note that there are some limitations to the capabilities
of the man page format, so some information (like class diagrams, cross references and formulas) will be lost.

3.3.6 DocBook output

Doxygen can also generate output in the DocBook format. How to process the DocBook output is beyond the
scope of this manual.

3.4 Step 3: Documenting the sources

Although documenting the sources is presented as step 3, in a new project this should of course be step 1. Here |
assume you already have some code and you want Doxygen to generate a nice document describing the APl and
maybe the internals and some related design documentation as well.

If the EXTRACT_ALL option is set to NO in the configuration file (the default), then Doxygen will only generate
documentation for documented entities. So how do you document these? For members, classes and namespaces
there are basically two options:

1. Place a special documentation block in front of the declaration or definition of the member, class or names-
pace. For file, class and namespace members it is also allowed to place the documentation directly after the
member.

See section Special comment blocks to learn more about special documentation blocks.
2. Place a special documentation block somewhere else (another file or another location) and put a structural

command in the documentation block. A structural command links a documentation block to a certain entity
that can be documented (e.g. a member, class, namespace or file).

See section Documentation at other places to learn more about structural commands.

The advantage of the first option is that you do not have to repeat the name of the entity.

Generated by Doxygen 1.13.1

https://docbook.org/

16 Getting started

Files can only be documented using the second option, since there is no way to put a documentation block before
a file. Of course, file members (functions, variables, typedefs, defines) do not need an explicit structural command;
just putting a special documentation block in front or behind them will work fine.

The text inside a special documentation block is parsed before it is written to the HTML and/or IATEX output files.

During parsing the following steps take place:

» Markdown formatting is replaced by corresponding HTML or special commands.

« The special commands inside the documentation are executed. See section Special Commands for an
overview of all commands.

« If a line starts with some whitespace followed by one or more asterisks (x) and then optionally more whites-
pace, then all whitespace and asterisks are removed.

« All resulting blank lines are treated as a paragraph separators. This saves you from placing new-paragraph
commands yourself in order to make the generated documentation readable.

* Links are created for words corresponding to documented classes (unless the word is preceded by a %; then
the word will not be linked and the % sign is removed).

« Links to members are created when certain patterns are found in the text. See section Automatic link generation
for more information on how the automatic link generation works.

» HTML tags that are in the documentation are interpreted and converted to IKTEX equivalents for the IATEX
output. See section HTML Commands for an overview of all supported HTML tags.

Generated by Doxygen 1.13.1

Chapter 4

Documenting the code

41 Special commentblocks L L 17
4.1.1 Comment blocks for C-like languages (C/C++/C#/Objective-C/PHP/Java) 17
Putting documentation aftermemberso oL 20

Examples L 21

Documentation at otherplaces Lo 23

4.1.2 CommentblocksinPython 25

41.3 Commentblocksin VHDL e 26

41.4 Commentblocksin Fortran 27

4.2 Anatomy of acommentblock 27

This chapter covers two topics:

1. How to put comments in your code such that Doxygen incorporates them in the documentation it generates.
This is further detailed in the next section.

2. Ways to structure the contents of a comment block such that the output looks good, as explained in section
Anatomy of a comment block.

4.1 Special comment blocks

A special comment block is a C or C++ style comment block with some additional markings, so Doxygen knows it
is a piece of structured text that needs to end up in the generated documentation. The next section presents the
various styles supported by Doxygen.

For Python, VHDL, and Fortran code there are different commenting conventions, which can be found in sections
Comment blocks in Python, Comment blocks in VHDL, and Comment blocks in Fortran respectively.

4.1.1 Comment blocks for C-like languages (C/C++/C#/Objective-C/PHP/Java)

For each entity in the code there are two (or in some cases three) types of descriptions, which together form
the documentation for that entity; a brief description and detailed description, both are optional. For methods
and functions there is also a third type of description, the so called in body description, which consists of the
concatenation of all comment blocks found within the body of the method or function.

Having more than one brief or detailed description is allowed (but not recommended, as the order in which the
descriptions will appear is not specified).

As the name suggest, a brief description is a short one-liner, whereas the detailed description provides longer, more
detailed documentation. An "in body" description can also act as a detailed description or can describe a collection

Generated by Doxygen 1.13.1

18 Documenting the code

of implementation details. For the HTML output brief descriptions are also used to provide tooltips at places where
an item is referenced.

There are several ways to mark a comment block as a detailed description:

1. You can use the Javadoc style, which consist of a C-style comment block starting with two x's, like this:

/ *
* ... text ...

*/

2. or you can use the Qt style and add an exclamation mark (!) after the opening of a C-style comment block,
as shown in this example:
/!
* ... text ...

*/

In both cases the intermediate x's are optional, so

/*!

. text ...
*/
is also valid.

3. Athird alternative is to use a block of at least two C++ comment lines, where each line starts with an additional
slash or an exclamation mark. Here are examples of the two cases:

/17
/// ... text ...
///

or

//!
//V... text ...
//!

Note that a blank line ends a documentation block in this case.

4. Some people like to make their comment blocks more visible in the documentation. For this purpose you can
use the following:

Jkkk ok k ok ok k ok kkkk ok kkk ok kA kkkkkkkkkkkkkkkxkkkxk//*%
* ... text
***/

Note: the 2 slashes to end the normal comment block and start a special comment block.

Note: be careful when using a reformatter like clang-format as it may see this type of comment as 2 separate
comments and introduce spacing between them.

or

[0 777707070700777777777777777777777777777777777
/// ... text ...
[71717170 07000777777777777777777777777777777777

or

/***
* ... text

***/

as long as JAVADOC_BANNER is set to YES.

/*x

« A brief history of JavaDoc-style (C-style) comments.

*

* This is the typical JavaDoc-style C-style comment. It starts with two
* asterisks.
*

Generated by Doxygen 1.13.1

4.1 Special comment blocks 19

* @param theory Even if there is only one possible unified theory. it is just a
* set of rules and equations.
x/

void cstyle(int theory);

/********‘k******‘k******‘k********‘k******‘k******‘k********‘k***********************
* A brief history of JavaDoc-style (C-style) banner comments.
*
This is the typical JavaDoc-style C-style "banner" comment. It starts with
a forward slash followed by some number, n, of asterisks, where n > 2. It’s
written this way to be more "visible" to developers who are reading the
source code.

Often, developers are unaware that this is not (by default) a valid Doxygen
comment block!

However, as long as JAVADOC_BANNER = YES is added to the Doxyfile, it will
work as expected.

This style of commenting behaves well with clang-format.

R N A S T S

@param theory Even if there is only one possible unified theory. it is just a
* set of rules and equations.
‘k*‘k*‘k****‘k****~)<*‘k*‘k****‘k*‘k*‘k****‘k**~k***‘k*‘k****‘k*‘k******‘k*‘k****‘k*‘k****‘k*‘k******/

void javadocBanner (int theory);

/********************‘k***//**
* A brief history of Doxygen-style banner comments.

*

This is a Doxygen-style C-style "banner" comment. It starts with a "normal"
comment and is then converted to a "special" comment block near the end of
the first line. It is written this way to be more "visible" to developers
who are reading the source code.

This style of commenting behaves poorly with clang-format.

P S S

@param theory Even if there is only one possible unified theory. it is just a
* set of rules and equations.
‘k****‘k*‘k******‘k******‘k******‘k*‘k******‘k******‘k******‘k*‘k******‘k******‘k******/

void doxygenBanner (int theory);

See Javadoc Banner example for the corresponding IATEX documentation that is generated by Doxygen.
For the brief description there are also several possibilities:

1. One could use the \brief command with one of the above comment blocks. This command ends at the end of
a paragraph, so the detailed description follows after an empty line.

Here is an example:

/+! \brief Brief description.
* Brief description continued.
*

* Detailed description starts here.

*/

2. If JAVADOC_AUTOBRIEF is set to YES in the configuration file, then using Javadoc style comment blocks will
automatically start a brief description which ends at the first dot, question mark or exclamation mark followed
by a space or new line. Here is an example:

/*% Brief description which ends at this dot. Details follow
* here.
*/

The option has the same effect for multi-line special C++ comments:

/// Brief description which ends at this dot. Details follow
/// here.

3. A third option is to use a special C++ style comment which does not span more than one line. Here are two
examples:

/// Brief description.
/*% Detailed description. x/

or

Generated by Doxygen 1.13.1

20 Documenting the code

//! Brief description.

//! Detailed description
//! starts here.

Note the blank line in the last example, which is required to separate the brief description from the block
containing the detailed description. The JAVADOC_AUTOBRIEF should also be set to NO for this case.

As you can see Doxygen is quite flexible. If you have multiple detailed descriptions, like in the following example:

//! Brief description, which is
//!' really a detailed description since it spans multiple lines.
/*! Another detailed description!

*/

They will be joined. Note that this is also the case if the descriptions are at different places in the code! In this case
the order will depend on the order in which Doxygen parses the code.

Unlike most other documentation systems, Doxygen also allows you to put the documentation of members (including
global functions) in front of the definition. This way the documentation can be placed in the source file instead of the
header file. This keeps the header file compact, and allows the implementer of the members more direct access to
the documentation. As a compromise the brief description could be placed before the declaration and the detailed
description before the member definition.

Putting documentation after members
If you want to document the members of a file, struct, union, class, or enum, it is sometimes desired to place the

documentation block after the member instead of before. For this purpose you have to put an additional < marker
in the comment block. Note that this also works for the parameters of a function.

Here are some examples:

int var; /*!< Detailed description after the member »*/

This block can be used to put a Qt style detailed documentation block affer a member. Other ways to do the same
are:

int var; /x*< Detailed description after the member =/
or

int var; //!< Detailed description after the member
//1<

or

int var; ///< Detailed description after the member
///<

Most often one only wants to put a brief description after a member. This is done as follows:

int var; //!< Brief description after the member

or

int var; ///< Brief description after the member

For functions one can use the @param command to document the parameters and then use [in], [out],

[in, out] to document the direction. For inline documentation this is also possible by starting with the direc-
tion attribute, e.g.

Generated by Doxygen 1.13.1

4.1 Special comment blocks 21

void foo(int v /*%< [in] docs for input parameter v. =*/);

Note that these blocks have the same structure and meaning as the special comment blocks in the previous section
only the < indicates that the member is located in front of the block instead of after the block.

Here is an example of the use of these comment blocks:

/x! A test class */

class Afterdoc_Test
{
public:
/*% An enum type.
* The documentation block cannot be put after the enum!
*/
enum EnumType

{

int EvVall, /*x< enum value 1 =%/
int EVal2 /**x< enum value 2 */
Vi
void member () ; //!< a member function.
protected:
int value; /*!< an integer value =*/

}i

See After Block example for the corresponding IATEX documentation that is generated by Doxygen.

Warning

These blocks can only be used to document members and parameters. They cannot be used to document
files, classes, unions, structs, groups, namespaces, macros, and enums themselves. Furthermore, the struc-
tural commands mentioned in the next section (like \ c1lass) are not allowed inside these comment blocks.

Be careful using this construct as part of a macro definition, because when MACRO_EXPANSION is set to
YES at the places where the macro is applied, also the comment will be substituted and this comment is then
used as documentation for the last item encountered and not for the macro definition itself!

Examples

Here is an example of a documented piece of C++ code using the Qt style:

//!' A test class.
/x!
A more elaborate class description.

*/

class QTstyle_Test
{
public:

//! An enum.
/+! More detailed enum description. =/
enum TEnum {
TVall, /*!< Enum value TVall. x/
TVal2, /*!< Enum value TVal2. x/
TVal3 /+!< Enum value TVal3. =/
}
//! Enum pointer.
/x! Details. */
*enumPtr,
//! Enum variable.
/+! Details. x/
enumVar;

//! A constructor.
/!
A more elaborate description of the constructor.
*/
QTstyle_Test ();

//! A destructor.
/!
A more elaborate description of the destructor.
*/
~QTstyle_Test ();

//!' A normal member taking two arguments and returning an integer value.
/x !

Generated by Doxygen 1.13.1

22 Documenting the code

\param a an integer argument.

\param s a constant character pointer.

\return The test results

\sa QTstyle_Test (), ~QTstyle_Test (), testMeToo() and publicVar (
*/
int testMe (int a,const char =xs);

//! A pure virtual member.
/*!
\sa testMe ()
\param cl the first argument.
\param c2 the second argument.
*/
virtual void testMeToo (char cl,char c2) = 0;

//! A public variable.
/x!
Details.
*/
int publicVar;

//! A function variable.
/!
Details.
*/
int (xhandler) (int a,int b);
Vi

See QT Style example for the corresponding IATEX documentation that is generated by Doxygen.

The brief descriptions are included in the member overview of a class, namespace or file and are printed using a
small italic font (this description can be hidden by setting BRIEF_MEMBER_DESC to NO in the configuration file).
By default the brief descriptions become the first sentence of the detailed descriptions (but this can be changed by
setting the REPEAT_BRIEF tag to NO). Both the brief and the detailed descriptions are optional for the Qt style.

By default a Javadoc style documentation block behaves the same way as a Qt style documentation block. This is
not according the Javadoc specification however, where the first sentence of the documentation block is automat-
ically treated as a brief description. To enable this behavior you should set JAVADOC_AUTOBRIEF to YES in the
configuration file. If you enable this option and want to put a dot in the middle of a sentence without ending it, you
should put a backslash and a space after it. Here is an example:

/** Brief description (e.g.\ using only a few words). Details follow. =*/

Here is the same piece of code as shown above, this time documented using the Javadoc style and
JAVADOC_AUTOBRIEF set to YES:

/**x
* A test class. A more elaborate class description.
*/

class Javadoc_Test
{
public:

/ *x

* An enum.

* More detailed enum description.
*/

enum TEnum {
TVall, /**< enum value TVall. x/
TVal2, /**< enum value TVal2. x/
TVal3 /#*x< enum value TVal3. x/
}
enumPtr, /x< enum pointer. Details. x/
enumvar; /*x< enum variable. Details. x/

[x*
* A constructor.
* A more elaborate description of the constructor.
*/

Javadoc_Test () ;

/[x %
* A destructor.
* A more elaborate description of the destructor.
*/
~Javadoc_Test () ;

/ **

Generated by Doxygen 1.13.1

4.1 Special comment blocks 23

* a normal member taking two arguments and returning an integer value.
* @param a an integer argument.

* @param s a constant character pointer.

* @see Javadoc_Test ()

* @see ~Javadoc_Test ()

* @see testMeToo ()

* @see publicVar (

* @return The test results

int testMe (int a,const char =xs);

[x*

* A pure virtual member.

* @see testMe ()

* @param cl the first argument.

* @param c2 the second argument.

*/

virtual void testMeToo (char cl,char c2) = 0;

/ x*

* a public variable.
* Details.

*/

int publicVar;

[x*
* a function variable.
* Details.
*/
int (xhandler) (int a,int b);
Vi

See Javadoc Style example for the corresponding IATEX documentation that is generated by Doxygen.

Similarly, if one wishes the first sentence of a Qt style documentation block to automatically be treated as a brief
description, one may set QT_AUTOBRIEF to YES in the configuration file.

Documentation at other places

In the examples in the previous section the comment blocks were always located in front of the declaration or
definition of a file, class or namespace or in front or after one of its members. Although this is often comfortable,
there may sometimes be reasons to put the documentation somewhere else. For documenting a file this is even
required since there is no such thing as "in front of a file".

Doxygen allows you to put your documentation blocks practically anywhere (the exception is inside the body of a
function or inside a normal C style comment block).

The price you pay for not putting the documentation block directly before (or after) an item is the need to put a
structural command inside the documentation block, which leads to some duplication of information. So in practice
you should avoid the use of structural commands unless other requirements force you to do so.

Structural commands (like all other commands) start with a backslash (\), or an at-sign (@) if you prefer Javadoc
style, followed by a command name and one or more parameters. For instance, if you want to document the class
Test in the example above, you could have also put the following documentation block somewhere in the input that
is read by Doxygen:

/*! \class Test
\brief A test class.

A more detailed class description.

*/

Here the special command \class is used to indicate that the comment block contains documentation for the
class Test. Other structural commands are:

* \struct to document a C-struct.
* \union to document a union.

+ \enum to document an enumeration type.

Generated by Doxygen 1.13.1

24 Documenting the code

+ \ £n to document a function.

» \var to document a variable or typedef or enum value.
« \def to document a #define.

» \typedef to document a type definition.

* \file to document a file.

* \namespace to document a namespace.

* \package to document a Java package.

* \interface to document an IDL interface.

See section Special Commands for detailed information about these and many other commands.

To document a member of a C++ class, you must also document the class itself. The same holds for namespaces.
To document a global C function, typedef, enum or preprocessor definition you must first document the file that
contains it (usually this will be a header file, because that file contains the information that is exported to other
source files).

Attention

Let's repeat that, because it is often overlooked: to document global objects (functions, typedefs, enum,
macros, etc), you must document the file in which they are defined. In other words, there must at least be a

/x! \file x/

ora

/*x% QRfile %/

line in this file.

Here is an example of a C header named st ructcmd. h that is documented using structural commands:

/%! \file structcmd.h
\brief A Documented file.

Details.

*/

/*! \def MAX(a,b)
\brief A macro that returns the maximum of \a a and \a b.

Details.

/! \var typedef unsigned int UINT32
\brief A type definition for a .

Details.
*/

/! \var int errno
\brief Contains the last error code.

\warning Not thread safe!

*/

/*! \fn int open(const char xpathname,int flags)
\brief Opens a file descriptor.

\param pathname The name of the descriptor.
\param flags Opening flags.
*/

/*! \fn int close(int fd)
\brief Closes the file descriptor \a fd.
\param fd The descriptor to close.

*/

/*! \fn size_t write(int fd,const char xbuf, size_t count)
\brief Writes \a count bytes from \a buf to the filedescriptor \a fd.
\param fd The descriptor to write to.

Generated by Doxygen 1.13.1

4.1 Special comment blocks

25

\param buf The data buffer to write.
\param count The number of bytes to write.

*/

/x! \fn int read(int fd,char xbuf,size_t count)
\brief Read bytes from a file descriptor.
\param fd The descriptor to read from.
\param buf The buffer to read into.

\param count The number of bytes to read.

*/

#define MAX (a,b) (((a)>(b))2(a): (b))
typedef unsigned int UINT32;

int errno;

int open(const char *,int);

int close(int);

size_t write(int,const char %, size_t);
int read(int,char x,size_t);

See Structural Commands example for the corresponding IATEX documentation that is generated by Doxygen.

Because each comment block in the example above contains a structural command, all the comment blocks could be
moved to another location or input file (the source file for instance), without affecting the generated documentation.
The disadvantage of this approach is that prototypes are duplicated, so all changes have to be made twice! Because
of this you should first consider if this is really needed, and avoid structural commands if possible. | often receive
examples that contain \fn command in comment blocks which are place in front of a function. This is clearly a case

where the \fn command is redundant and will only lead to problems.

When you place a comment block in a file with one of the following extensions .dox, .txt, .doc, .md or
.markdown or when the extension maps to md by means of the EXTENSION_MAPPING then Doxygen will hide

this file from the file list.

If you have a file that Doxygen cannot parse but still would like to document it, you can show it as-is using

\verbinclude, e.g.

/*! \file myscript.sh
* Look at this nice script:
* \verbinclude myscript.sh

*/

Make sure that the script is explicitly listed in the INPUT or that FILE_PATTERNS includes the . sh extension and

the script can be found in the path set via EXAMPLE_PATH.

4.1.2 Comment blocks in Python

For Python there is a standard way of documenting the code using so called documentation strings ("""). Such
strings are stored in __doc___ and can be retrieved at runtime. Doxygen will extract such comments and assume

they have to be represented in a preformatted way.

"""@package docstring
Documentation for this module.

More details.

nun

def func():
"""Documentation for a function.

More details.
wn

I

class PyClass:
"""Documentation for a class.

More details.

nun

def __init__ (self):
"""The constructor."""
self._memVar = 0;

def PyMethod(self):
"""Documentation for a method."""

Generated by Doxygen 1.13.1

26 Documenting the code

See Python Docstring example for the corresponding IATEX documentation that is generated by Doxygen.

Note

When using """ none of Doxygen's special commands are supported and the text is shown as verbatim text
see \verbatim. To have the Doxygen's special commands and have the text as regular documentation instead
of """ use """ ! orset PYTHON_DOCSTRING to NO in the configuration file.

Instead of """ one can alsouse '"'"'.

There is also another way to document Python code using comments that start with "##" or "##<". These type of
comment blocks are more in line with the way documentation blocks work for the other languages supported by
Doxygen and this also allows the use of special commands.

Here is the same example again but now using Doxygen style comments:

@package pyexample

Documentation for this module.
#

More details.

Documentation for a function.

#
More details.
def func():

Documentation for a class.
#

More details.

class PyClass:

The constructor.
def __init__ (self):
self._memVar = 0;

Documentation for a method.
(@param self The object pointer.
def PyMethod(self):

A class variable.
classVar = 0;

Q@var _memVar
a member variable

See Python example for the corresponding IATEX documentation that is generated by Doxygen.

Since python looks more like Java than like C or C++, you should set OPTIMIZE_OUTPUT_JAVA to YES in the
configuration file.

4.1.3 Comment blocks in VHDL

For VHDL a comment normally start with "--". Doxygen will extract comments starting with "--1". There are only two
types of comment blocks in VHDL; a one line "--I" comment representing a brief description, and a multi-line "--!"
comment (where the "--I" prefix is repeated for each line) representing a detailed description.

Comments are always located in front of the item that is being documented with one exception: for ports the
comment can also be after the item and is then treated as a brief description for the port.

Here is an example VHDL file with Doxygen comments:
—-—! @file
——! @brief 2:1 Mux using with-select

-—! Use standard library
library i ;
——! Use logic elements

use ieee.std_logic_1164.all;

——! Mux entity brief description

Generated by Doxygen 1.13.1

4.2 Anatomy of a comment block

27

——! Detailed description of this
——! mux design element.
i mux_using_with 1

port (

din_0 : std_logic; --! Mux first input
din_1 : std_logic; —--! Mux Second input
sel : in std_logic; --! Select input
mux_out : std_logic --! Mux output

)i
Ly

--! Q@brief Architecture definition of the MUX

—-—! @details More details about this mux element.

tu behavior of mux_using_with
begin
with (sel) elect
mux_out <= din_0 when ’0',

din_1 S s ers;

7

hi

See VHDL example for the corresponding IATEX documentation that is generated by Doxygen.

As of VHDL 2008 it is also possible to use /* style comments.
Doxygen will handle /* ... x/as plain comments and /x*!

to be parsed by Doxygen.

*/ style comments as special comments

To get proper looking output you need to set OPTIMIZE_OUTPUT_VHDL to YES in the configuration file. This will
also affect a number of other settings. When they were not already set correctly Doxygen will produce a warning

telling which settings where overruled.

4.1.4 Comment blocks in Fortran

When using Doxygen for Fortran code you should set OPTIMIZE_FOR_FORTRAN to YES.

The parser tries to guess if the source code is fixed format Fortran or free format Fortran code. This may not always

be correct. If not one should use EXTENSION_MAPPING to correct this. By setting EXTENSION_MAPPING

f=FortranFixed f90=FortranFree files with extension f are interpreted as fixed format Fortran code and

files with extension £90 are interpreted as free format Fortran code.

For Fortran "I>" or "I<" starts a comment and "!!" or "!>" can be used to continue an one line comment into a

multi-line comment.

Here is an example of a documented Fortran subroutine:

!> Build the restriction matrix for the aggregation

!'! method.

!'l @param aggr information about the aggregates

!'l @todo Handle special case

subroutine intrestbuild(A,aggr,Restrict,A_ghost)
implicit none

Type (SpMtx), intent(in) :: A !< our fine level matrix
Type (Aggrs), intent (in) :: aggr

Type (SpMtx), intent (out) :: Restrict !< Our restriction matrix
]

end subroutine

As an alternative you can also use comments in fixed format code:

C> Function comment
C> another line of comment
function a (i)
C> input parameter
integer i
end function A

4.2 Anatomy of a comment block

The previous section focused on how to make the comments in your code known to Doxygen, it explained the

difference between a brief and a detailed description, and the use of structural commands.
In this section we look at the contents of the comment block itself.

Doxygen supports various styles of formatting your comments.

Generated by Doxygen 1.13.1

28 Documenting the code

The simplest form is to use plain text. This will appear as-is in the output and is ideal for a short description.

For longer descriptions you often will find the need for some more structure, like a block of verbatim text, a list, or
a simple table. For this Doxygen supports the Markdown syntax, including parts of the Markdown Extra
extension.

Markdown is designed to be very easy to read and write. Its formatting is inspired by plain text mail. Markdown
works great for simple, generic formatting, like an introduction page for your project. Doxygen also supports reading
of markdown files directly. For more details see chapter Markdown support.

For programming language specific formatting Doxygen has two forms of additional markup on top of Markdown
formatting.

1. Javadoc like markup. See Special Commands for a complete overview of all commands supported by
Doxygen.

2. XML markup as specifiedinthe C# standard. See XML Commands for the XML commands supported
by Doxygen.

If this is still not enough Doxygen also supports a subset of the HTML markup language.

Generated by Doxygen 1.13.1

https://daringfireball.net/projects/markdown/syntax
https://michelf.ca/projects/php-markdown/extra/
https://en.wikipedia.org/wiki/Javadoc
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/xmldoc/recommended-tags-for-documentation-comments
http://standards.iso.org/ittf/PubliclyAvailableStandards/c042926_ISO_IEC_23270_2006(E).zip
https://en.wikipedia.org/wiki/HTML

Chapter 5

Additional Documentation

5.1 Custom Pages 29
52 ScalingUp L e 30
5.2.1 Automatically Adding Files 30
522 Side Panel Treeview e 30

5.1 Custom Pages

Doxygen can be also be used to create custom pages that are not part of the API of your library/program. The
purpose of such pages is to enrich your documentation with anything else that you think the user may find useful.

To create custom pages, use one of the supported file extension: . dox, .txt, or .md. Doxygen will treat a .dox
or .txt file as a C/C++ source file, and a .md file as a Markdown file.

For a .dox or .txt file, one can use a single Doxygen comment, like so:

manual/index.dox

/*% \mainpage My Library Manual
— Building

- Basics

- Examples

*/

You'll note that the \mainpage command was used, which tells Doxygen to use this page as, well, the main page.
For other pages, prefix them with the \page command.

By default Doxygen will not know about these custom files, so we'll need to let it know through the INPUT attribute
in our Doxyfile. For the about example add this line to your Doxyfile:
INPUT = manual/index.dox

Next, we may want to add the instructions on how to build the project, so we create manual /building/index. «
dox. As you read a bit more of the documentation, you will find out that Doxygen supports a subset of the HTML
tags, so we can write the following:

/*+ \page Building

<h2>Linux</h2>
<p>
A simple way to build this project is with cmake, clone the repository, cd into the root of the project
and run:
</p>

<pre>
<code>
mkdir my_build
cmake -S . -B my_build
cd my_build
cmake --build .
</code>
</pre>

Generated by Doxygen 1.13.1

30 Additional Documentation

*/

But you can of course also do the same using the popular Markdown notation:

Building
Linux

A simple way to build this project is with cmake, clone the repository,
cd into the root of the project and run:

mkdir my_build

cmake -S . -B my_build
cd my_build

cmake --build .

5.2 Scaling Up

5.2.1 Automatically Adding Files

At this point we could now go ahead and add manual /building/index.dox to our INPUT's with comma
separation, but this might become annoying over time as we build up our manual, instead we'll just change it
reference our manual folder:

INPUT = manual/
And set
RECURSIVE = YES

To make sure as we add any subdirectories of the manual as we create more organization and content.

5.2.2 Side Panel Treeview

As your manual scales up, you might want to also have a nice tree view to show you where you are in the manual
to stay organized. This is easy enough to set up, turn it on with
GENERATE_TREEVIEW = YES

In your Doxyfile.

You'll recall that our manual /index . dox file is pretty bland, without any links pointing anywhere, by using the \ref
command we can add links between various topics, and doing so will automatically start to populate our treeview.

If you notice that your tree is more like a pile of leaves then you can remedy this by checking out Subpaging.

This discussion should give you some direction on how to build a scalable manual to enrich your documentation,
from here you might want to customize your layout.

Generated by Doxygen 1.13.1

Chapter 6

Markdown support

Markdown support was introduced in Doxygen version 1.8.0. It is a plain text formatting syntax written by John
Gruber, with the following underlying design goal:

The design goal for Markdown's formatting syntax is to make it as readable as possible. The idea is
that a Markdown-formatted document should be publishable as-is, as plain text, without looking like it's
been marked up with tags or formatting instructions. While Markdown's syntax has been influenced by
several existing text-to-HTML filters, the single biggest source of inspiration for Markdown's syntax is
the format of plain text email.

In the next section the standard Markdown features are briefly discussed. The reader is referred to the Markdown
site for more details.

Some enhancements were made, for instance PHP Markdown Extra, and GitHub flavored
Markdown. The section Markdown Extensions discusses the extensions that Doxygen supports.

Finally section Doxygen specifics discusses some specifics for Doxygen's implementation of the Markdown stan-
dard.

6.1 Standard Markdown

6.1.1 Paragraphs

Even before Doxygen had Markdown support it supported the same way of paragraph handling as Markdown: to
make a paragraph you just separate consecutive lines of text by one or more blank lines.

An example:

Here is text for one paragraph.

We continue with more text in another paragraph.

6.1.2 Headers

Just like Markdown, Doxygen supports two types of headers

Level 1 or 2 headers can be made as the follows

This is a level 1 header

This is a level 2 header

Generated by Doxygen 1.13.1

https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://michelf.ca/projects/php-markdown/extra/
https://github.github.com/github-flavored-markdown/
https://github.github.com/github-flavored-markdown/

32 Markdown support

A header is followed by a line containing only ='s or -'s. Note that the exact amount of ='s or -'s is not important as
long as there are at least two.

Alternatively, you can use #'s at the start of a line to make a header. The number of #'s at the start of the line
determines the level (up to 6 levels are supported). You can end a header by any number of #'s.

Here is an example:

This is a level 1 header

This is level 3 header ######+#

6.1.3 Block quotes
Block quotes can be created by starting each line with one or more >'s, similar to what is used in text-only emails.

> This is a block quote
> spanning multiple lines

Lists and code blocks (see below) can appear inside a quote block. Quote blocks can also be nested.

Note that Doxygen requires that you put a space after the (last) > character to avoid false positives, i.e. when
writing

0 if OK\n
>1 if NOK

the second line will not be seen as a block quote.

6.1.4 Lists
Simple bullet lists can be made by starting a line with -, +, or .

- Item 1

More text for this item.
- Item 2

+ nested list item.

+ another nested item.
- Item 3

List items can span multiple paragraphs (if each paragraph starts with the proper indentation) and lists can be
nested. You can also make a numbered list like so

1. First item.
2. Second item.

Make sure to also read Lists Extensions for Doxygen specifics.

6.1.5 Code Blocks
Preformatted verbatim blocks can be created by indenting each line in a block of text by at least 4 extra spaces

This a normal paragraph
This is a code block

We continue with a normal paragraph again.

Generated by Doxygen 1.13.1

6.1 Standard Markdown 33

Doxygen will remove the mandatory indentation from the code block. Note that you cannot start a code block in the
middle of a paragraph (i.e. the line preceding the code block must be empty).

See section Code Block Indentation for more info how Doxygen handles indentation as this is slightly different than
standard Markdown.

6.1.6 Horizontal Rulers

A horizontal ruler will be produced for lines containing at least three or more hyphens, asterisks, or underscores.
The line may also include any amount of whitespace.

Examples:

Note that using asterisks in comment blocks does not work. See Use of asterisks for details.
Note that when using hyphens and the previous line is not empty you have to use at least one whitespace in the
sequence of hyphens otherwise it might be seen as a level 2 header (see Headers).

6.1.7 Emphasis

To emphasize a text fragment you start and end the fragment with an underscore or star. Using two stars or
underscores will produce strong emphasis.

Examples:

+*single asterisksx
single underscores
*+xdouble asterisksxx

double underscores

See section Emphasis and strikethrough limits for more info how Doxygen handles emphasis / strikethrough spans
slightly different than standard / Markdown GitHub Flavored Markdown.

6.1.8 Strikethrough

To strikethrough a text fragment you start and end the fragment with two tildes.

Examples:

~~double tilde~~

See section Emphasis and strikethrough limits for more info how Doxygen handles emphasis / strikethrough spans
slightly different than standard Markdown / GitHub Flavored Markdown.

6.1.9 code spans

To indicate a span of code, you should wrap it in backticks (*). Unlike code blocks, code spans appear inline in a
paragraph. An example:

Use the ‘printf () function.

To show a literal backtick or single quote inside a code span use double backticks, i.e.

Generated by Doxygen 1.13.1

34 Markdown support

LRRTRY

To assign the output of command ‘ls' to ‘var' use ‘‘var=1‘ls
To assign the text ’'text’ to ‘var' use ‘‘var='text’ ‘‘.

See section Code Spans Limits for more info how Doxygen handles code spans slightly different than standard
Markdown.

6.1.10 Links

Doxygen supports both styles of make links defined by Markdown: inline and reference.

For both styles the link definition starts with the link text delimited by [square brackets].

Inline Links

For an inline link the link text is followed by a URL and an optional link title which together are enclosed in a set of
regular parenthesis. The link title itself is surrounded by quotes.

Examples:

[The link text]
[The link text]
[The link text]
[The link text]

http://example.net/)

http://example.net/ "Link title™)
/relative/path/to/index.html "Link title")
somefile.html)

(
(
(
(
In addition Doxygen provides a similar way to link a documented entity:

[The link text] (Qref MyClass)

in case the first non whitespace character of the reference is a # this is interpreted as a Doxygen link and replaced
as a @ref command:

[The link text] (#MyClass)
will be interpreted as:

@ref MyClass "The link text"

Reference Links

Instead of putting the URL inline, you can also define the link separately and then refer to it from within the text.

The link definition looks as follows:

[link name]: http://www.example.com "Optional title"

Instead of double quotes also single quotes or parenthesis can be used for the title part.

Once defined, the link looks as follows
[link text][link name]

If the link text and name are the same, also
[link name] []

or even

Generated by Doxygen 1.13.1

6.1 Standard Markdown

35

[link name]

can be used to refer to the link. Note that the link name matching is not case sensitive as is shown in the following

example:

I get 10 times more traffic from [Google] than from
[Yahoo] or [MSN].

[google]l: http://google.com/ "Google"
[yahoo]l: http://search.yahoo.com/ "Yahoo Search"
[msn]: http://search.msn.com/ "MSN Search"

Link definitions will not be visible in the output.

Like for inline links Doxygen also supports @ref inside a link definition:

[myclass]: Qref MyClass "My class"

6.1.11 Images

Markdown syntax for images is similar to that for links. The only difference is an additional ! before the link text.

Examples:

! [Caption text] (/path/to/img. jpg)

! [Caption text] (/path/to/img.jpg "Image title")
! [Caption text] [img def]

!'[img def]

[img def]: /path/to/img.jpg "Optional Title"
Also here you can use @ref to link to an image:

! [Caption text] (@ref image.png)

!'[img def]

[img def]: Q@ref image.png "Caption text"

The caption text is optional.

Note
Don't forget to add the path of the image to the IMAGE_PATH.

6.1.12 Automatic Linking

To create a link to an URL or e-mail address Markdown supports the following syntax:

<http://www.example.com>
<https://www.example.com>
<ftp://www.example.com>
<mailto:address@example.com>
<address@example.com>

Note that Doxygen will also produce the links without the angle brackets.

Generated by Doxygen 1.13.1

36 Markdown support

6.2 Markdown Extensions

6.2.1 Table of Contents

Doxygen supports a special link marker [TOC] which can be placed in a page to produce a table of contents at the
start of the page, listing all sections.

Note that using [TOC] is the same as using a \tableofcontents command.

Note that the TOC_INCLUDE_HEADINGS has to be set to a value > 0 otherwise no table of contents is shown
when using Markdown Headers.

6.2.2 Tables

Of the features defined by "Markdown Extra" is support for simple tables:

A table consists of a header line, a separator line, and at least one row line. Table columns are separated by the
pipe (|) character.

Here is an example:

First Header | Second Header
_____________ | ————
Content Cell | Content Cell
Content Cell | Content Cell

which will produce the following table:

First Header | Second Header
Content Cell Content Cell
Content Cell Content Cell

Column alignment can be controlled via one or two colons at the header separator line:

| Right | Center | Left |
[———=: | === | i———=]
| 10 | 10 | 10

[1000 | 1000 | 1000 |

which will look as follows:

Right | Center | Left
10 10 10
1000 1000 1000

Additionally, column and row spans are supported. Using a caret ("") in a cell indicates that the cell above should
span rows. Sequences of carets may be used for any number of row spans. For example:

| Right | Center | Left |
[————: | ===z | i=——= |
| 10 | 10 | 10

(I | 1000 | 1000 |

which will look as follows:

Right | Center | Left

10 10
1000 1000

10

Generated by Doxygen 1.13.1

https://michelf.ca/projects/php-markdown/extra/#table

6.2 Markdown Extensions 37

Column spans are supported by means of directly adjacent vertical bars ("|"). Each additional vertical bar indicates
an additional column to be spanned. To put it another way, a single vertical bar indicates a single column span, two
vertical bars indicates a 2 columns span, and so on. For example:

| Right | Center | Left |

| - | immmmr | s \
| 10 | 10 | 10
[1000 |11

which will look as follows:

Right | Center | Left
10 10 10
1000

For more complex tables in Doxygen please have a look at: Including tables

6.2.3 Fenced Code Blocks

Another feature defined by "Markdown Extra" is support for fenced code blocks:

A fenced code block does not require indentation, and is defined by a pair of "fence lines". Such a line consists of
3 or more tilde (~) characters on a line. The end of the block should have the same number of tildes. Here is an
example:

This is a paragraph introducing:

By default the output is the same as for a normal code block.

For languages supported by Doxygen you can also make the code block appear with syntax highlighting. To do
so you need to indicate the typical file extension that corresponds to the programming language after the opening
fence. For highlighting according to the Python language for instance, you would need to write the following:

A class
class Dummy:
pass

which will produce:

A class
class Dummy:

and for C you would write:

int func(int a,int b) { return axb; }

which will produce:

int func(int a,int b) { axb; }

The dot is optional, the curly braces are optional when the that language name begins with a alphabetical character
and further characters are alphanumerical characters.

Another way to denote fenced code blocks is to use 3 or more backticks ("™):

Generated by Doxygen 1.13.1

https://michelf.ca/projects/php-markdown/extra/#fenced-code-blocks

38 Markdown support

also a fenced code block

For the image formats dot, msc and plantuml the fenced block will be shown as an image provided the image
format is enabled (see HAVE_DOT and PLANTUML_JAR_PATH), otherwise it is shown as plain code.

Example:

" 'plantuml
Alice -> Bob

or

" plantuml
@startuml
Alice -> Bob
@enduml

6.2.4 Header Id Attributes

Standard Markdown has no support for labeling headers, which is a problem if you want to link to a section.

PHP Markdown Extra allows you to label a header by adding the following to the header

Header 1 {#labelid}

Header 2 ## {#labelid2}

To link to a section in the same comment block you can use
[Link text] (#labelid)

to link to a section in general, Doxygen allows you to use @ref
[Link text] (Rref labelid)

Note this only works for the headers of level 1 to 4.

6.2.5 Image Attributes

Standard Markdown has no support for controlling image dimensions which results in less flexibility when writing
docs.

PHP Markdown Extra allows you to add extra attributes to an image as in:

!'[Caption text] (/path/to/img. jpg) {attributes}

To allow for output format specific attributes the following syntax is supported

! [Caption text] (/path/to/img.jpg) {format: attributes, format: attributes}

For a description of the possibilities see the paragraph Size indication for the \image command.

For example:
! [Doxygen Logo] (https://www.doxygen.org/images/doxygen.png) {html: width=50%, latex: width=5cm}

6.3 Doxygen specifics

Even though Doxygen tries to following the Markdown standard as closely as possible, there are couple of deviation
and Doxygen specifics additions.

Generated by Doxygen 1.13.1

6.3 Doxygen specifics 39

6.3.1 Including Markdown files as pages

Doxygen can process files with Markdown formatting. For this to work the extension for such a file should be .md
or .markdown (see EXTENSION_MAPPING if your Markdown files have a different extension, and use md as the
name of the parser). Each file is converted to a page (see the page command for details).

By default the name and title of the page are derived from the file name. If the file starts with a level 1 header
however, it is used as the title of the page. If you specify a label for the header (as shown in Header Id Attributes)
Doxygen will use that as the page name.

If the label is called index or mainpage Doxygen will put the documentation on the front page (index.html).

Here is an example of a file README . md that will appear as the main page when processed by Doxygen:

My Main Page {#mainpage}

Documentation that will appear on the main page

If a page has a label you can link to it using @ref as is shown above. To refer to a markdown page without such
label you can simple use the file name of the page, e.g.

See [the other page] (other.md) for more info.

6.3.2 Treatment of HTML blocks

Markdown is quite strict in the way it processes block-level HTML:

block-level HTML elements — e.g. <div>, <table>, <pre>, <p>, etc. — must be separated
from surrounding content by blank lines, and the start and end tags of the block should not be indented
with tabs or spaces.

Doxygen does not have this requirement, and will also process Markdown formatting inside such HTML blocks. The
only exception is <pre> blocks, which are passed untouched (handy for ASCII art).

Doxygen will not process Markdown formatting inside verbatim or code blocks, and in other sections that need to
be processed without changes (for instance formulas or inline dot graphs).

6.3.3 Code Block Indentation

Markdown allows both a single tab or 4 spaces to start a code block. Since Doxygen already replaces tabs by
spaces before doing Markdown processing, the effect will only be same if TAB_SIZE in the configuration file has
been set to 4. When it is set to a higher value spaces will be present in the code block. A lower value will prevent a
single tab to be interpreted as the start of a code block.

With Markdown any block that is indented by 4 spaces (and 8 spaces inside lists) is treated as a code block. This
indentation amount is absolute, i.e. counting from the start of the line.

Since Doxygen comments can appear at any indentation level that is required by the programming language, it uses
a relative indentation instead. The amount of indentation is counted relative to the preceding paragraph. In case
there is no preceding paragraph (i.e. you want to start with a code block), the minimal amount of indentation of the
whole comment block is used as a reference.

In most cases this difference does not result in different output. Only if you play with the indentation of paragraphs
the difference is noticeable:

text
text
text

code

Generated by Doxygen 1.13.1

40 Markdown support

In this case Markdown will put the word code in a code block, whereas Doxygen will treat it as normal text, since
although the absolute indentation is 4, the indentation with respect to the previous paragraph is only 1.

Note that list markers are not counted when determining the relative indent:
1. Iteml

More text for iteml
2. Item2

Code block for item2

For Item1 the indentation is 4 (when treating the list marker as whitespace), so the next paragraph "More text..."
starts at the same indentation level and is therefore not seen as a code block.

6.3.4 Emphasis and strikethrough limits

Unlike standard Markdown and GitHub Flavored Markdown Doxygen will not touch internal underscores or stars or
tildes, so the following will appear as-is:

a_nice_identifier
Furthermore, a * or __ only starts an emphasis and a ~ only starts a strikethrough if

« it is followed by an alphanumerical character, and

« it is preceded by a space, newline, or one the following characters <{ ([, :;
An emphasis or a strikethrough ends if

« it is not followed by an alphanumerical character, and

« it is not preceded by a space, newline, or one the following characters ({ [<=+-\@

The span of the emphasis or strikethrough is limited to a single paragraph.

Lastly, note that when you want to put emphasis on a piece of text at the start of a line by means of xs within a C-
style Doxygen comment block (i.e. /*x ... x/)that does not have leading * as column "lineup”, then Doxygen
will see the sequence of xs at the beginning of the line as "lineup" and not as emphasis. So the following will not
render as bold:

/ *x
**xthis is not boldxx

*/
however this will render as bold:

/ *x
* xxthis is boldx*x*

*/

6.3.5 Code Spans Limits

Note that unlike standard Markdown, Doxygen leaves the following untouched.

A ‘cool’ word in a ‘nice’ sentence.
In other words; a single quote cancels the special treatment of a code span wrapped in a pair of backtick characters.
This extra restriction was added for backward compatibility reasons.

In case you want to have single quotes inside a code span, don't use one backtick but two backticks around the
code span.

Generated by Doxygen 1.13.1

6.3 Doxygen specifics 41

6.3.6 Lists Extensions

With Markdown two lists separated by an empty line are joined together into a single list which can be rather
unexpected and many people consider it to be a bug. Doxygen, however, will make two separate lists as you would
expect.

Example:

- Iteml of list 1
- Item2 of list 1

[y

. Iteml of list 2
2. Item2 of list 2

With Markdown the actual numbers you use to mark the list have no effect on the HTML output Markdown produces.
l.e. standard Markdown treats the following as one list with 3 numbered items:

1. Iteml
1. Item2
1. Item3

Doxygen however requires that the numbers used as marks are in strictly ascending order, so the above example
would produce 3 lists with one item. An item with an equal or lower number than the preceding item, will start a new
list. For example:

. Iteml of list
. Item2 of list
. Iteml of list
Item2 of list

SN W
NN P

will produce:

1. ltem1 of list 1

2. ltem2 of list 1

1. ltem1 of list 2
2. ltem2 of list 2

Historically Doxygen has an additional way to create numbered lists by using —# markers:

—# iteml
-# item2

Lists with as indicator a checked or unchecked check box are by using — [] or— [x] or— [X] as markers:

- [] unchecked
- [x] checked

6.3.7 Use of asterisks

Special care has to be taken when using *'s in a comment block to start a list or make a ruler.

Doxygen will strip off any leading *'s from the comment before doing Markdown processing. So although the
following works fine

/xx A list:
* % iteml
* x item2

*/

When you remove the leading *'s Doxygen will strip the other stars as well, making the list disappear!

Rulers created with *'s will not be visible at all. They only work in Markdown files.

Generated by Doxygen 1.13.1

42 Markdown support

6.3.8 Limits on markup scope

To avoid that a stray * or _ matches something many paragraphs later, and shows everything in between with
emphasis, Doxygen limits the scope of a * and _ to a single paragraph.

For a code span, between the starting and ending backtick only two new lines are allowed.

Also for links there are limits; the link text, and link title each can contain only one new line, the URL may not contain
any newlines.

6.3.9 Support for GitHub Alerts

In the GitHub version of markdown there is the support for so called alerts, the syntax is similar to a one level
block quote followed by [! <alert>] where <alert> can be one of note, warning, tip, caution or
important. In Doxygen these alerts are translated into normal Doxygen commands:

* > [!note] is translated to \note

+ > [!warning] istranslated to \warning
« > [!tip] is translated to \remark

+ > [!caution] istranslated to \attention

+ > [!important] is translated to \important

Example:

> [!note]
> The special text the note

which will render as:

Note

The special text for the note

6.4 Debugging problems

When Doxygen parses the source code it first extracts the comments blocks, then passes these through the
Markdown preprocessor. The output of the Markdown preprocessing consists of text with special commands and
HTML commands. A second pass takes the output of the Markdown preprocessor and converts it into the various
output formats.

During Markdown preprocessing no errors are produced. Anything that does not fit the Markdown syntax is simply
passed on as-is. In the subsequent parsing phase this could lead to errors, which may not always be obvious as
they are based on the intermediate format.

To see the result after Markdown processing you can run Doxygen with the —d Markdown option. It will then print
each comment block before and after Markdown processing.

Generated by Doxygen 1.13.1

Chapter 7

Lists

Doxygen provides a number of ways to create lists of items.
Using dashes

By putting a number of column-aligned minus (=) signs at the start of a line, a bullet list will automatically be
generated. Instead of the minus sign also plus (+) or asterisk (x) can be used.

Numbered lists can also be generated by using a minus followed by a hash (#) or by using a number followed by a
dot.

Lists with as indicator a checked or unchecked check box are possible when having a minus followed by optional
spaces and followed by [] for an unchecked check box and [x] or [X] for a checked check box.

Nesting of lists is allowed and is based on indentation of the items.

Here is an example:

A list of events:
— mouse events
-# mouse move event
-# mouse click event\n
More info about the click event.
-# mouse double click event
— keyboard events
1. key down event
2. key up event
— checkbox 1list
- [1 unchecked
- [x] checked

More text here.

Lo S I . S S S N N S . S N N

~

The result will be:

A list of events:

* mouse events

1. mouse move event

2. mouse click event
More info about the click event.

3. mouse double click event
* keyboard events

1. key down event
2. key up event

Generated by Doxygen 1.13.1

a4 Lists

« checkbox list

0 unchecked

checked

More text here.

If you use tabs for indentation within lists, please make sure that TAB_SIZE in the configuration file is set to the
correct tab size.

You can end a list by starting a new paragraph or by putting a dot (.) on an empty line at the same indentation level
as the list you would like to end.

Here is an example that speaks for itself:

*

Text before the list
- list item 1
- sub item 1

- sub sub item 1

- sub sub item 2

The dot above ends the sub sub item list.
More text for the first sub item
The dot above ends the first sub item.
More text for the first list item
- sub item 2
- sub item 3
- list item 2

More text in the same paragraph.

More text in a new paragraph.

L S S e S S T S S S N T S N S T S

~

Using HTML commands
If you like you can also use HTML commands inside the documentation blocks.

Here is the above example with HTML commands:

A list of events:

 mouse events

mouse move event
mouse click event

More info about the click event.

mouse double click event

<1li> keyboard events

key down event
key up event

More text here.

L S S N

R

Generated by Doxygen 1.13.1

45

Note

In this case the indentation is not important.

Using \arg or \li

For compatibility with the Qt Software's internal documentation tool gdoc and with KDoc, Doxygen has two com-
mands that can be used to create simple unnested lists.

See \arg and \li for more info.

Generated by Doxygen 1.13.1

46

Lists

Generated by Doxygen 1.13.1

Chapter 8
Grouping

Doxygen has three mechanisms to group things together. One mechanism works at a global level, creating a new
page for each group. These groups are called 'topics' in the documentation. The second mechanism works within a
member list of some compound entity, and is referred to as a 'member groups'. For pages there is a third grouping
mechanism referred to as Subpaging.

8.1 Topics

Grouping is a way to group things together on a separate page, called a topic. You can document a group as
a whole, as well as all individual members. Members of a group can be files, namespaces, classes, concepts,
modules, functions, variables, enums, typedefs, and defines, but also other groups.

To define a group, you should put the \defgroup command in a special comment block. The first argument of the
command is a label that should uniquely identify the group. The second argument is the name or title of the group
as it should appear in the documentation.

You can make an entity a member of a specific group by putting a \ingroup command inside its documentation block.

To avoid putting \ingroup commands in the documentation for each member you can also group members together
by the open marker @ { before the group and the closing marker @} after the group. The markers can be put in the
documentation of the group definition or in a separate documentation block.

Groups themselves can also be nested using these grouping markers.

You will get an error message when you use the same group label more than once. If you don't want Doxygen to
enforce unique labels, then you can use \addtogroup instead of \defgroup. It can be used exactly like \defgroup, but
when the group has been defined already, then it silently merges the existing documentation with the new one. The
title of the group is optional for this command, so you can use

/+* \addtogroup <label>
* @{
*/

[xx Q}*/

to add additional members to a group that is defined in more detail elsewhere.

Note that compound entities (like classes, files and namespaces) can be put into multiple groups, but members (like
variable, functions, typedefs and enums) can only be a member of one group (this restriction is in place to avoid
ambiguous linking targets in case a member is not documented in the context of its class, namespace or file, but
only visible as part of a group).

Doxygen will put members into the group whose definition has the highest "priority": e.g. An explicit \ingroup
overrides an implicit grouping definition via @ { @}. Conflicting grouping definitions with the same priority trigger a
warning, unless one definition was for a member without any explicit documentation.

Generated by Doxygen 1.13.1

48 Grouping

The following example puts VarlnA into group A and silently resolves the conflict for IntegerVariable by putting it into
group IntVariables, because the second instance of IntegerVariable is undocumented:

/ *x
* \ingroup A
*/

extern int VarInA;

/ *x

* \defgroup IntVariables Global integer variables
* @

*/

/** an integer variable =/
extern int IntegerVariable;

/x*Q}*/

/ *x

+ \defgroup Variables Global variables
*/

/xx@{x/

/*% a variable in group A */
int VarInA;

int IntegerVariable;

[xxQ@}*/

The \ref command can be used to refer to a group. The first argument of the \ref command should be group's label.
To use a custom link name, you can put the name of the links in double quotes after the label, as shown by the
following example

This is the \ref group_label "link" to this group.

The priorities of grouping definitions are (from highest to lowest): \ingroup, \defgroup, \addtogroup, \weakgroup.
The \weakgroup command is exactly like \addtogroup with a lower priority. It was added to allow "lazy" grouping
definitions: you can use commands with a higher priority in your .h files to define the hierarchy and \weakgroup in
.c files without having to duplicate the hierarchy exactly.

Example:

/+% @defgroup groupl The First Group
% This is the first group

* @{

*/

/*% @brief class Cl in group 1 =/
class C1 {};

/*% @brief class C2 in group 1 =/
class C2 {};

/*% function in group 1 =/
void func () {}

/%% @} %/ // end of groupl

/**

* @defgroup group2 The Second Group
* This is the second group

*/

/*% @defgroup group3 The Third Group
% This is the third group
*/

/*x @defgroup group4 The Fourth Group
* @ingroup group3
* Group 4 is a subgroup of group 3

Generated by Doxygen 1.13.1

8.2 Member Groups

49

*/

/[x %
* @ingroup group2
* @brief class C3 in group 2
*/

class C3 {};

/*% @ingroup group2
* @brief class C4 in group 2
*/

class C4 {};

/** @ingroup group3

* @brief class C5 in @link group3 the third group@endlink.

*/
class C5 {};

/*% @ingroup groupl group2 group3 group4
* namespace N1 is in four groups
% @sa Q@link groupl The first group@endlink, group2,
*
* Also see Qref mypage2
*/

namespace N1 {};

/*x @file
* @ingroup group3
* @brief this file in group 3
*/

/*% @defgroup group5 The Fifth Group
% This is the fifth group
* Q@
*/

/*x @page mypagel This is a section in group 5
x Text of the first section
*/

/*x @page mypage2 This is another section in group 5
x Text of the second section
*/

/%% @} %/ // end of group5

/+% @addtogroup groupl
* More documentation for the first group.
* @q

/*% another function in group 1 =/

void func2() {}

/%% yet another function in group 1 =*/
void func3() {}

/%% @} %/ // end of groupl

See Grouping example for the corresponding IATEX documentation that is generated by Doxygen.

8.2 Member Groups

group4

If a compound (e.g. a class or file) has many members, it is often desired to group them together. Doxygen already
automatically groups things together on type and protection level, but maybe you feel that this is not enough or that
that default grouping is wrong. For instance, because you feel that members of different (syntactic) types belong to

the same (semantic) group.

A member group is defined by a
/774
s

block or a

Generated by Doxygen 1.13.1

50 Grouping

[xx@{x/

/xx@}x/

block if you prefer C style comments. Note that the members of the group should be physically inside the member
group's body.

Before the opening marker of a block a separate comment block may be placed. This block should contain the
@name (or \name) command and is used to specify the header of the group. Optionally, the comment block may
also contain more detailed information about the group.

Nesting of member groups is not allowed.

If all members of a member group inside a class have the same type and protection level (for instance all are static
public members), then the whole member group is displayed as a subgroup of the type/protection level group (the
group is displayed as a subsection of the "Static Public Members" section for instance). If two or more members
have different types, then the group is put at the same level as the automatically generated groups. If you want
to force all member-groups of a class to be at the top level, you should put a \nosubgrouping command inside the
documentation of the class.

Example:

/x% A class. Details */

class Memgrp_Test

{

public:

///@{
/*x Same documentation for both members. Details =/
void funclInGroupl () ;
void func2InGroupl () ;
///@}

/** Function without group. Details. =/
void ungroupedFunction () ;
void funclInGroup2();
protected:
void func2InGroup2();
i

void Memgrp_Test::funclInGroupl () {}
void Memgrp_Test::func2InGroupl () {}
/%% @name Group2

* Description of group 2.

*/
///@{
/*x Function 2 in group 2. Details. «/
void Memgrp_Test::func2InGroup2 () {}
/*% Function 1 in group 2. Details. =/
void Memgrp_Test::funclInGroup2 () {}
///@}

/x1 \file
x docs for this file
*/

//'eq

//! one description for all members of this group

//! (because DISTRIBUTE_GROUP_DOC is YES in the config file)
#define A 1

#define B 2

void glob_func();

//'@}

See Member Groups example for the corresponding IATEX documentation that is generated by Doxygen.

Here Group1 is displayed as a subsection of the "Public Members". And Group2 is a separate section because it
contains members with different protection levels (i.e. public and protected).

8.3 Subpaging

Information can be grouped into pages using the \page and \mainpage commands. Normally, this results in a flat
list of pages, where the "main" page is the first in the list.

Generated by Doxygen 1.13.1

8.3 Subpaging 51

Instead of adding structure using the approach described in section topics it is often more natural and convenient
to add additional structure to the pages using the \subpage command.

For a page A the \subpage command adds a link to another page B and at the same time makes page B a subpage
of A. This has the effect of making two groups GA and GB, where GB is part of GA, page A is put in group GA, and
page B is put in group GB.

Generated by Doxygen 1.13.1

52

Grouping

Generated by Doxygen 1.13.1

Chapter 9

Including formulas

Doxygen allows you to put IKTEX formulas in the output (this works only for the HTML, IATEX and RTF output. To be
able to include formulas (as images) in the HTML and RTF documentation, you will also need to have the following
tools installed

+ latex: the IATEX compiler, needed to parse the formulas. To test | have used the teTeX 1.0 distribution.

* dvips: atool to convert DVI files to PostScript files | have used version 5.92b from Radical Eye software
for testing.

* gs: the GhostScript interpreter for converting PostScript files to bitmaps. | have used Aladdin GhostScript

8.0 for testing.

For the HTML output there is also an alternative solution using MathJax which does not require the above tools.
If you enable USE_MATHJAX in the configuration then the latex formulas will be copied to the HTML "as is" and a
client side JavaScript will parse them and turn them into (interactive) images.

There are four ways to include formulas in the documentation.
1. Using in-text formulas that appear in the running text. These formulas should be put between a pair of \f$
commands, so

The distance between \f$(x_1,y_1)\f$ and \f$(x_2,y_2)\f$ is
\fS\sgrt{(x_2-x_1)"2+(y_2-y_1)"2}\fs.

results in:

The distance between (x1,y1) and (x2,y2) is \/(x2 —x1)2 + (y2 —y1)*.

2. Using in-text formulas that appear in the running text, contrary to \f$ it will not explicitly open the math mode
in IATEX. These formulas should be put between \f(and \f) commands, so

The LaTeX and Tex logos are: \f(\LaTeX \f) and \f (\TeX \f).

results in:
The LaTeX and Tex logos are: IATEX and TeX.

3. Unnumbered displayed formulas that are centered on a separate line. These formulas should be put between
\f[and \f] commands. An example:

\fl
[I_2|=\1left| \int_{0}"T \psi(t)
\left\{
u(a,t)-
\int_{\gamma (t) }~a
\frac{d\theta}{k (\theta,t)}
\int_{a}~\theta c(\xi)u_t (\xi,t)\,d\xi

Generated by Doxygen 1.13.1

https://www.mathjax.org

54 Including formulas

\right\} dt
\right |
\f]

results in:

b= \/OT w(r){u(mr)—/ﬂ“l)k(‘g‘i)/:c@)u,(ar)dé}dt

4. Formulas or other latex elements that are not in a math environment can be specified using \f{environment},
where environment is the name of the IATEX environment, the corresponding end command is \f}. Here is
an example for an equation array

\f{egnarrayx}{
g &=& \frac{Gm_2}{r~2} \\
&=& \frac{(6.673 \times 10"{-11}\, \mbox{m}"3\, \mbox{kg}*{-1}\,
\mbox{s}"{-2}) (5.9736 \times 107{24}\,\mbox{kg}) }{(6371.01\, \mbox{km}) "2} \\
&=& 9.82066032\, \mbox{m/s}"2
\f}

which results in:

Chnz
2

r
(6.673 x 107" m3kg~"s72)(5.9736 x 10**kg)
(6371.01km)?2

9.82066032 m/s>

For the first and third commands one should make sure formulas contain valid commands in IATEX's math-mode.
The second command should valid text-mode commands that also work in math-mode when using USE_MATHJAX.
For the fourth command the section should contain valid command for the specific environment.

Warning

Currently, Doxygen is not very fault tolerant in recovering from typos in formulas. It may be necessary to
remove the files formula.repository that are written to the html, rtf etc. directories to get rid of an
incorrect formula as well as the form_ * files.

To have the possibility to define your own IATEX commands, for e.g. formula building blocks or consistent writing of
certain words, the configuration option FORMULA_MACROFILE can be used. to supply a file with IATEX commands.
This file can contain IATEX \newcommand and \renewcommand commands and they are included formulas
(image version and MathJax version) as well as in the generated IATEX output (for PDF generation).

The \newcommand (and \renewcommand) are restricted to a version without optional parameters so only the
following types are supported:

\newcommand{\cmd} {replacement }
\newcommand{\cmd} [nr] {replacement}

e.g.
\newcommand{\E} {\mathrm{E}}
\newcommand{\ccSum} [3] {\sum_{#1}"{#2}{#3}}

Generated by Doxygen 1.13.1

Chapter 10

Including tables

Doxygen supports two ways to put tables in the documentation.
The easiest is to use the Markdown format as shown in Markdown Extensions section Tables.

Although this format is easy to use and read, it is also rather limited. It supports only a simple grid of cells, while
each cell is a single line of plain text.

For more complex tables the HTML syntax can be used. Doxygen will process such tables and translate them to
the various output formats (at least for the formats that do support tables such as HTML and IATEX).

Note a table should at least contain 1 row (<tr>) and in case a <caption> is used the <caption> should
precede the first row.

Here is an example of a complex table:

<table>
<caption id="multi_row">Complex table</caption>
<tr><th>Column 1 <th>Column 2 <th>Column 3
<tr><td rowspan="2">cell row=1+2,col=1<td>cell row=1l,col=2<td>cell row=1l,col=3
<tr><td rowspan="2">cell row=2+3,col=2 <td>cell row=2,col=3
<tr><td>cell row=3,col=1 <td rowspan="2">cell row=3+4,col=3
<tr><td colspan="2">cell row=4,col=1+2
<tr><td>cell row=5,col=1 <td colspan="2">cell row=5,col=2+3
<tr><td colspan="2" rowspan="2">cell row=6+7,col=1+2 <td>cell row=6,col=3
<tr> <td>cell row=7,col=3
<tr><td>cell row=8,col=1 <td>cell row=8,col=2\n

<table>

<tr><td>Inner cell row=1l,col=1<td>Inner cell row=1l,col=2
<tr><td>Inner cell row=2,col=1<td>Inner cell row=2,col=2
</table>
<td>cell row=8,col=3

Ttem 1
Item 2

</table>

It has a caption, table heading, various row and column spans, a nested table as one of the cells, and a item list in
another cell.

Note that the end tags (like </td>) are left out in the example above. This is allowed, and in the HTML output
Doxygen will add the end tags again.

Generated by Doxygen 1.13.1

56 Including tables

The output will look as follows:

Table 10.1: Complex table

Column 1 Column 2 Column 3
cell row=1,col=2 cell row=1,col=3
cell row=2,col=3

cell row=1+2,col=1

cell row=2+3,col=2

cell row=3,col=1
cell row=4,col=1+2
cell row=5,col=1 cell row=5,col=2+3

cell row=3+4,col=3

cell row=6,col=3

cell row=6+7,col=1+2
cell row=7,col=3

cell row=8,col=1 cell row=8,col=2 cell row=8,col=3
Inner cell row=1,col=1 Inner cell row=1,col=2
Inner cell row=2,col=1 Inner cell row=2,col=2 * ltem 1
e ltem2

One can refer to the caption of the table using \ref using the caption's id as the label.

Generated by Doxygen 1.13.1

Chapter 11

Graphs and diagrams

Doxygen has built-in support to generate inheritance diagrams for C++ classes.

Doxygen can use the "dot" tool from graphviz to generate more advanced diagrams and graphs. Graphviz is an
open-source, cross-platform graph drawing toolkit and can be found at https://www.graphviz.org/

If you have the "dot" tool in the path, you can set HAVE_DOT to YES in the configuration file to let Doxygen use it.

Doxygen uses the "dot" tool to generate the following graphs:

+ A graphical representation of the class hierarchy will be drawn, along with the textual one. Currently this
feature is supported for HTML only.
Warning: When you have a very large class hierarchy where many classes derive from a common base
class, the resulting image may become too big to handle for some browsers.

+ Aninheritance graph will be generated for each documented class showing the direct and indirect inheritance
relations. This disables the generation of the built-in class inheritance diagrams.

» An include dependency graph is generated for each documented file that includes at least one other file. This
feature is currently supported for HTML and RTF only.

» An inverse include dependency graph is also generated showing for a (header) file, which other files include
it.

» A graph is drawn for each documented class and struct that shows:

— the inheritance relations with base classes.
— the usage relations with other structs and classes (e.g. class A has a member variable m_a of type
class B, then A has an arrow to B with m_a as label).

« if CALL_GRAPH is set to YES, a graphical call graph is drawn for each function showing the functions that
the function directly or indirectly calls (see also section \callgraph and section \hidecallgraph).

+ if CALLER_GRAPH is set to YES, a graphical caller graph is drawn for each function showing the functions
that the function is directly or indirectly called by (see also section \callergraph and section \hidecallergraph).

 If DIRECTORY_GRAPH is set to YES, Doxygen will generate graphs that show the directory dependencies
for every directory. The graph will show directories as boxes. Subdirectories are shown nested into the box
of its parent directory. The depth of the graph is configured through DIR_GRAPH_MAX_DEPTH. Include
dependencies between the directories are shown as arrows.

Using a layout file you can determine which of the graphs are actually shown.

The options DOT_GRAPH_MAX_NODES and MAX_DOT_GRAPH_DEPTH can be used to limit the size of the
various graphs.

The elements in the class diagrams in HTML and RTF have the following meaning:

Generated by Doxygen 1.13.1

https://www.graphviz.org/

58

Graphs and diagrams

A yellow box indicates a class. A box can have a little marker in the lower right corner to indicate that the
class contains base classes that are hidden. For the class diagrams the maximum tree width is currently 8
elements. If a tree is wider some nodes will be hidden. If the box is filled with a dashed pattern the inheritance
relation is virtual.

A white box indicates that the documentation of the class is currently shown.
A gray box indicates an undocumented class.

A solid dark blue arrow indicates public inheritance.

A dashed dark green arrow indicates protected inheritance.

A dotted dark green arrow indicates private inheritance.

The elements in the class diagram in IATEX have the following meaning:

A white box indicates a class. A marker in the lower right corner of the box indicates that the class has base
classes that are hidden. If the box has a dashed border this indicates virtual inheritance.

A solid arrow indicates public inheritance.
A dashed arrow indicates protected inheritance.

A dotted arrow indicates private inheritance.

The elements in the graphs generated by the dot tool have the following meaning:

A white box indicates a class or struct or file.

A box with a red border indicates a node that has more arrows than are shown! In other words: the graph
is truncated with respect to this node. The reason why a graph is sometimes truncated is to prevent images
from becoming too large. For the graphs generated with dot Doxygen tries to limit the width of the resulting
image to 1024 pixels.

A black box indicates that the class' documentation is currently shown.

A dark blue arrow indicates an include relation (for the include dependency graph) or public inheritance (for
the other graphs).

A dark green arrow indicates protected inheritance.
A dark red arrow indicates private inheritance.

A purple dashed arrow indicated a "usage" relation, the edge of the arrow is labeled with the variable(s)
responsible for the relation. Class A uses class B, if class A has a member variable m of type C, where B is a
subtype of C (e.g. C could be B, Bx, Tx).

The elements in the directory dependency graphs have the following meaning:

A box with a bold border indicates the directory that the directory dependency graph has been generated for.

A box with a red solid border indicates a directory whose subdirectories are not shown in the graph ("trun-
cated"). To configure the depth of subdirectories that are shown in the graph see DIR_GRAPH_MAX_DEPTH.

A box with a red dashed border indicates a truncated directory whose parent directories are not shown in
the graph either.

A box with a dashed border other than red indicates that not all but at least one subdirectory are shown.
A box with a light gray border indicates a directory with both of the following two attributes:

— lIts parent directory is not shown.

Generated by Doxygen 1.13.1

59

— At least one subdirectory is shown.

» A box with no background color indicates a directory which is not a subdirectory of the origin's parent
directories which are shown. The origin is the directory for which the directory dependency graph is shown.

« An arrow between two boxes indicates an include dependency between two directories. The include depen-
dency exists if afile in a directory includes a file of another directory. If a directory that is involved in an include
dependency is not shown in the graph, the arrow is attached to the first parent directory that is shown. This
parent directory is shown as truncated (see above).

Here are a couple of header files that together show the various diagrams that Doxygen can generate:

diagrams_a.h

#ifndef DIAGRAMS_A
#define DIAGRAMS_A
class A { public: A *m_self; };
#endif

_H
_H

diagrams_b.h

#ifndef DIAGRAMS_B_H
#define DIAGRAMS_B_H

class A;

class B { public: A *m_a; };
#endif

diagrams_c.h

#ifndef DIAGRAMS_C_H

#define DIA 5_C_H

#include "diagrams_c.h"

class D;

class C : public A { public: D xm_d; };
#endif

diagrams_d.h

#ifndef DIAGRAM_D_H
#define DIAGRAM_D_H
#include "diagrams_a.h"
s_b.h"

#include "diagra
class C;

class D : virtual protected A, private B { public: C m_c; };
#endif

diagrams_e.h

#ifndef DIAGRAM_E_H
#define DIAGRAM_E_H
#include "diagrams_d.h"
class E : public D {};
#endif

Note EXTRACT_ALL = YES is used to generate the diagrams.

Generated by Doxygen 1.13.1

60

Graphs and diagrams

Generated by Doxygen 1.13.1

Chapter 12

Preprocessing

Source files that are used as input to Doxygen can be parsed by Doxygen's built-in C-preprocessor.

By default Doxygen does only partial preprocessing. That is, it evaluates conditional compilation statements (like
#1f) and evaluates macro definitions, but it does not perform macro expansion.

So if you have the following code fragment

#define VERSION 200
#define CONST_STRING const char =

#1f VERSION >= 200

static CONST_STRING version = "2.xx";
#else

static CONST_STRING version = "1.xx";
#endif

Then by default Doxygen will feed the following to its parser:

#define VERSION
#define CONST_STRING

static CONST_STRING version = "2.xx";

You can disable all preprocessing by setting ENABLE_PREPROCESSING to NO in the configuration file. In the
case above Doxygen will then read both statements, i.e.:

static CONST_STRING version = "2.xx";
static CONST_STRING version = "1.xx";

In case you want to expand the CONST_STRING macro, you should set the MACRO_EXPANSION tag in the
configuration file to YES. Then the result after preprocessing becomes:

#define VERSION
#define CONST_STRING

static const char % version = "2.xx";

Note that Doxygen will now expand all macro definitions (recursively if needed). This is often too much. There-
fore, Doxygen also allows you to expand only those defines that you explicitly specify. For this you have
to set the EXPAND_ONLY_PREDEF tag to YES and specify the macro definitions after the PREDEFINED or
EXPAND_AS_DEFINED tag.

A typically example where some help from the preprocessor is needed is when dealing with the language extension
from Microsoft: __declspec. The same goes for GNU's __attribute___ extension. Here is an example
function.

Generated by Doxygen 1.13.1

62 Preprocessing

extern "C" void __declspec(dllexport) ErrorMsg(String aMessage,...);

When nothing is done, Doxygen will be confused and see ___dec1spec as some sort of function. To help Doxygen
one typically uses the following preprocessor settings:

ENABLE_PREPROCESSING = YES
MACRO_EXPANSION = YES
EXPAND_ONLY_PREDEF = YES
PREDEFINED = __declspec (x)=

This will make sure the __declspec (dllexport) is removed before Doxygen parses the source code.

Similar settings can be used for removing __attribute__ expressions from the input:

ENABLE_PREPROCESSING = YES
MACRO_EXPANSION = YES
EXPAND_ONLY_PREDEF = YES
PREDEFINED = __attribute_ (x)=

For a more complex example, suppose you have the following obfuscated code fragment of an abstract base class
called TUnknown:

/+x! A reference to an IID x/
#ifdef _ cplusplus

#define REFIID const IID &
#else

#define REFIID const IID =x
#endif

/*! The IUnknown interface x/

DECLARE_INTERFACE (IUnknown)

{
STDMETHOD (HRESULT, QueryInterface) (THIS_ REFIID iid, void xxppv) PURE;
STDMETHOD (ULONG, AddRef) (THIS) PURE;
STDMETHOD (ULONG, Release) (THIS) PURE;

Vi

without macro expansion Doxygen will get confused, but we may not want to expand the REF I ID macro, because
it is documented and the user that reads the documentation should use it when implementing the interface.

By setting the following in the configuration file:

ENABLE_PREPROCESSING = YES
MACRO_EXPANSION = YES
EXPAND_ONLY_PREDEF YES
PREDEFINED = "DECLARE_INTERFACE (name)=class name" \
"STDMETHOD (result, name)=virtual result name" \
"PURE= = 0" \
THIS_= \
THIS= \
__cplusplus

we can make sure that the proper result is fed to Doxygen's parser:

/*! A reference to an IID x/
#define REFIID

/+! The IUnknown interface */
class IUnknown

{

virtual HRESULT QueryInterface (REFIID iid, void *x*ppv) = 0;
virtual ULONG AddRef () = 0;
virtual ULONG Release () = 0;

bi

Generated by Doxygen 1.13.1

63

Note that the PREDEFINED tag accepts function like macro definitions (like DECLARE_INTERFACE), norma
macro substitutions (like PURE and THIS) and plain defines (like __cplusplus).

Note also that preprocessor definitions that are normally defined automatically by the preprocessor (like __
cplusplus), have to be defined by hand with Doxygen's parser (this is done because these defines are often
platform/compiler specific).

In some cases you may want to substitute a macro name or function by something else without exposing the result
to further macro substitution. You can do this but using the : = operator instead of =

As an example suppose we have the following piece of code:

fdefine QList QListT
class QListT

{

Vi

Then the only way to get Doxygen interpret this as a class definition for class QList is to define:

PREDEFINED = QListT:=QList

Here is an example provided by Valter Minute and Reyes Ponce that helps Doxygen to wade through the boilerplate
code in Microsoft's ATL & MFC libraries:

PREDEFINED = "DECLARE_INTERFACE (name)=class name" \
"STDMETHOD (result, name)=virtual result name" \
"PURE= = 0" \
THIS_= \
THIS= \

DECLARE_REGISTRY_RESOURCEID=// \
DECLARE_PROTECT_FINAL_CONSTRUCT=// \
"DECLARE_AGGREGATABLE (Class)= " \
"DECLARE_REGISTRY_RESOURCEID (Id)= " \
DECLARE_MESSAGE_MAP= \
BEGIN_MESSAGE_MAP=/% \
END_MESSAGE_MAP=x/// \

BEGIN_COM_MAP=/* \

END_COM_MAP=%/// \

BEGIN_PROP_MAP=/x \

END_PROP_MAP=%*/// \

BEGIN_MSG_MAP=/+ \

END_MSG_MAP=x/// \
BEGIN_PROPERTY_MAP=/* \
END_PROPERTY_MAP=x/// \
BEGIN_OBJECT_MAP=/+ \

END_OBJECT_MAP ()=x/// \
DECLARE_VIEW_STATUS=// \
"STDMETHOD (a) =HRESULT a" \
"ATL_NO_VTABLE= " \

"__declspec(a)= " \
BEGIN_CONNECTION_POINT_MAP=/x \
END_CONNECTION_POINT_MAP=x/// \
"DECLARE_DYNAMIC (class)= " \
"IMPLEMENT_DYNAMIC (classl, class2)= " \
"DECLARE_DYNCREATE (class)= " \
"IMPLEMENT_DYNCREATE (classl, class2)= " \
"IMPLEMENT_SERIAL (classl, class2, class3)= " \
"DECLARE_MESSAGE_MAP ()= " \

TRY=try \

"CATCH_ALL (e)= catch(...)" \
END_CATCH_ALL= \

"THROW_LAST ()= throw"\

"RUNTIME_CLASS (class)=class" \
"MAKEINTRESOURCE (nId)=nId" \
"IMPLEMENT_REGISTER (v, w, X, y, z)= "\
"ASSERT (x) =assert (x)" \

"ASSERT_VALID (x)=assert (x)" \
"TRACEO (x) =printf (x)" \

"OS_ERR(A,B)={ #A, B }" \

Generated by Doxygen 1.13.1

64 Preprocessing

__cplusplus \

"DECLARE_OLECREATE (class)= " \

"BEGIN_DISPATCH_MAP (classl, class2)= " \
"BEGIN_INTERFACE_MAP (classl, class2)= "
"INTERFACE_PART (class, id, name)= " \
"END_INTERFACE_MAP ()=" \

"DISP_FUNCTION (class, name, function, result, id)=" \
"END_DISPATCH_MAP ()=" \

"IMPLEMENT_OLECREATE2 (class, name, idl, id2, 1id3, id4,\
id5, ide, id7, id8, id9, idl10, idill)="

As you can see Doxygen's preprocessor is quite powerful, but if you want even more flexibility you can al-
ways write an input filter and specify it after the INPUT_FILTER tag or the FILTER_PATTERNS tag (or the
FILTER_SOURCE_PATTERNS tag).

If you are unsure what the effect of the filter will be you can run Doxygen as follows: doxygen -d
filteroutput.

If you are unsure what the effect of Doxygen's preprocessing will be you can run Doxygen as follows:

doxygen —-d Preprocessor

or when the line numbers are not wanted:

doxygen -d Preprocessor —-d NoLineno

This will instruct Doxygen to dump the input sources to standard output after preprocessing has been done (Hint:
set QUIET = YES and WARNINGS = NO in the configuration file to disable any other output).

Note preprocessing is not done for all languages. Preprocessing is enabled for files that use the "C" scanner (with
the exception of ‘java', 'd' and 'php'), Fortran files (only in case the extension contains at least one upper case
character) and vhdl files.

Generated by Doxygen 1.13.1

Chapter 13

Automatic link generation

13.1 Linkstoweb pagesand mail addresses 65
13.2 Linkstoclasses 65
13.3 Linkstofiles e 65
13.4 Linkstofunctions 66
13.5 Linkstoothermembers L 66
13.6 typedefs e 68

Most documentation systems have special ‘see also’ sections where links to other pieces of documentation can be
inserted. Although Doxygen also has a command to start such a section (See section \sa), it does allow you to
put these kind of links anywhere in the documentation. For IATEX documentation a reference to the page number
is written instead of a link. Furthermore, the index at the end of the document can be used to quickly find the
documentation of a member, class, namespace or file. For man pages no reference information is generated.

The next sections show how to generate links to the various documented entities in a source file.

13.1 Links to web pages and mail addresses

Doxygen will automatically replace any URLs and mail addresses found in the documentation by links (in HTML).
To manually specify link text, use the HTML 'a’ tag:

1link text

which will be automatically translated to other output formats by Doxygen.

13.2 Links to classes

All words in the documentation that correspond to a documented class and contain at least one non-lower case
character will automatically be replaced by a link to the page containing the documentation of the class. If you want
to prevent that a word that corresponds to a documented class is replaced by a link you should put a % in front of
the word. To link to an all lower case symbol, use \ref.

13.3 Links to files

All words that contain a dot (.) that is not the last character in the word are considered to be file names. If the word
is indeed the name of a documented input file, a link will automatically be created to the documentation of that file.

Generated by Doxygen 1.13.1

66 Automatic link generation

13.4 Links to functions

Links to functions are created if one of the following patterns is encountered:

1. <functionName>" ("<argument-list>")"

2. <functionName>" ()"

3. "::"<functionName>
4. (<className>"::")"<functionName>" ("<argument-list>")"
5. (<className>"::")"<functionName>" ("<argument-list>")"<modifiers>
6. (<className>"::")"<functionName>" ()"
7. (<className>"::")"<functionName>
where n>0.
Note 1:

Function arguments should be specified with correct types, i.e. 'fun(const std::string&,bool)' or '()' to match
any prototype.

Note 2:

Member function modifiers (like 'const’ and 'volatile’) are required to identify the target, i.e. 'func(int) const' and
'func(int)' target different member functions.

Note 3:

For Javadoc compatibility a # may be used instead of a :: in the patterns above.

Note 4:

In the documentation of a class containing a member foo, a reference to a global variable is made using "::foo",
whereas #foo will link to the member.

For non overloaded members the argument list may be omitted.

If a function is overloaded and no matching argument list is specified (i.e. pattern 2 or 6 is used), a link will be
created to the documentation of one of the overloaded members.

For member functions the class scope (as used in patterns 4 to 7) may be omitted, if:

1. The pattern points to a documented member that belongs to the same class as the documentation block that
contains the pattern.

2. The class that corresponds to the documentation blocks that contains the pattern has a base class that
contains a documented member that matches the pattern.

13.5 Links to other members

All of these entities can be linked to in the same way as described in the previous section. For sake of clarity it is
advised to only use patterns 3 and 7 in this case.

Generated by Doxygen 1.13.1

13.5 Links to other members

67

Example:

/! \file autolink.cpp
Testing automatic link generation.

A link to a member of the Autolink_Test class: Autolink_Test::member,

More specific links to the each of the overloaded members:
Autolink_Test::member (int) and Autolink_Test#member (int, int)

A link to a protected member variable of Autolink_Test: Autolink_Test#var,

A link to the global enumeration type #GlobEnum.

A link to the define #ABS(x).

A link to the destructor of the Autolink_Test class: Autolink_Test::~Autolink_Test,
A link to the typedef ::B.

A link to the enumeration type Autolink_Test::EType

A link to some enumeration values Autolink_Test::Vall and ::GVal2
*/

/!
Since this documentation block belongs to the class Autolink_Test no link to
Autolink_Test is generated.
Two ways to link to a constructor are: #Autolink_Test and Autolink_Test ().
Links to the destructor are: #~Autolink_Test and ~Autolink_Test ().

A link to a member in this class: member ().

More specific links to the each of the overloaded members:
member (int) and member (int, int) .

A link to the variable #var.

A link to the global typedef ::B.

A link to the global enumeration type #GlobEnum.

A link to the define ABS (x).

A link to a variable \link #var using another text\endlink as a link.

A link to the enumeration type #EType.

A link to some enumeration values: \link Autolink_Test::Vall Vall \endlink and ::GVall.

And last but not least a link to a file: autolink.cpp.

\sa Inside a see also section any word is checked, so EType,

Vall, GVall, ~Autolink_Test and member will be replaced by links in HTML.

*/

class Autolink_Test
{

public:
Autolink_Test (); //1< constructor
~Autolink_Test () ; //!< destructor
void member (int); /**< A member function. Details. =%/

void member (int,int); /**< An overloaded member function. Details =/

/%% An enum type. More details x/
enum EType {

vall, /**< enum value 1 =/
val2 /+%< enum value 2 */
}i
protected:
int var; /**< A member variable =/

bi

/*! details. =/
Autolink_Test::Autolink_Test () { }

/*! details. x/
Autolink_Test::~Autolink_Test () { }

/*! A global variable. =/
int globVar;

/+*! A global enum. =/
enum GlobEnum {

Generated by Doxygen 1.13.1

68

Automatic link generation

Gvall, /*!< global enum value 1 x/
Gval2 /*1< global enum value 2 x/
}i
/x!
* A macro definition.
*/
#define ABS (x) (((x)>0)7?(x):-(x))

typedef Autolink_Test B;

/! \fn typedef Autolink_Test B
* A type definition.
*/

See Autolink example for the corresponding IATEX documentation that is generated by Doxygen.

13.6 typedefs

Typedefs that involve classes, structs and unions, like

typedef struct StructName TypeName

create an alias for StructName, so links will be generated to StructName, when either StructName itself or Type«

Name is encountered.

Example:

/x! \file restypedef.cpp
* An example of resolving typedefs.
*/

/*! \struct CoordStruct

* A coordinate pair.

*/
struct CoordStruct

{

/*! The x coordinate =/
float x;

/+! The y coordinate =*/
float y;
}i

/*! Creates a type name for CoordStruct =/
typedef CoordStruct Coord;

/x|

x* This function returns the addition of \a cl and \a c2, i.e:

* (cl.x+c2.x,cl.y+tc2.y)

*/
Coord add(Coord cl,Coord c2)
{
}

See Typedef example for the corresponding IATEX documentation that is generated by Doxygen.

Generated by Doxygen 1.13.1

Chapter 14

Output Formats

The following output formats are directly supported by Doxygen:

HTML
Generated if GENERATE_HTML is set to YES in the configuration file.

ETEX
Generated if GENERATE_LATEX is set to YES in the configuration file.

Man pages
Generated if GENERATE_MAN is set to YES in the configuration file.

RTF
Generated if GENERATE_RTF is set to YES in the configuration file.

Note that the RTF output probably only looks nice with Microsoft's Word. If you have success with other
programs, please let me know.

XML
Generated if GENERATE_XML is set to YES in the configuration file.

DocBook
Generated if GENERATE_DOCBOOK is set to YES in the configuration file.

The following output formats are indirectly supported by Doxygen:

Compiled HTML Help (a.k.a. Windows 98 help)
Generated by Microsoft's HTML Help workshop from the HTML output if GENERATE_HTMLHELP is set to
YES.

Qt Compressed Help (.qch)
Generated by Qt's ghelpgenerator tool from the HTML output if GENERATE_QHP is set to YES.

Eclipse Help
Generated from HTML with a special index file that is generated when GENERATE_ECLIPSEHELP is set to
YES.

XCode DocSets
Compiled from HTML with a special index file that is generated when GENERATE_DOCSET is set to YES.

PostScript
Generated from the IATEX output by running make ps in the output directory. For the best results
PDF_HYPERLINKS should be set to NO.

PDF
Generated from the IATEX output by running make pdf in the output directory. To improve the PDF out-
put, you typically would want to enable the use of pdflatex by setting USE_PDFLATEX to YES in the
configuration file. In order to get hyperlinks in the PDF file you also need to enable PDF_HYPERLINKS.

Generated by Doxygen 1.13.1

70

Output Formats

Generated by Doxygen 1.13.1

Chapter 15

Searching

Doxygen indexes your source code in various ways to make it easier to navigate and find what you are looking for.
There are also situations however where you want to search for something by keyword rather than browse for it.

HTML browsers by default have no search capabilities that work across multiple pages, so either Doxygen or
external tools need to help to facilitate this feature.

Doxygen has 7 different ways to add searching to the HTML output, each of which has its own advantages and
disadvantages:

1. Client side searching

The easiest way to enable searching is to enable the built-in client side search engine. This engine is implemented
using JavaScript and DHTML only and runs entirely on the clients browser. So no additional tooling is required to
make it work.

To enable it set SEARCHENGINE to YES in the configuration file and make sure SERVER_BASED_SEARCH is
set to NO.

An additional advantage of this method is that it provides live searching, i.e. the search results are presented and
adapted as you type.

This method also has its drawbacks: it is limited to searching for symbols only. It does not provide full text search
capabilities and it does not scale well to very large projects (then searching becomes very slow). Furthermore the
searching is done from the beginning of the indexed items, so when having the available items A_STRING, AA«
_STRING and STRING and typing in the search box A it will find A_STRING and AA_STRING, but when typing
e.g. STR it will only find STRING and not A_STRING.

2. Server side searching

If you plan to put the HTML documentation on a web server, and that web server has the capability to process PHP
code, then you can also use Doxygen's built-in server side search engine.

To enable this set both SEARCHENGINE and SERVER_BASED_SEARCH to YES in the configuration file and set
EXTERNAL_SEARCH to NO.

Advantages over the client side search engine are that it provides full text search and it scales well to medium side
projects.

Disadvantages are that it does not work locally (i.e. using a "file:/" URL) and that it does not provide live search
capabilities.
Note

In the future this option will probably be replaced by the next search option.

Generated by Doxygen 1.13.1

72 Searching

3. Server side searching with external indexing

With release 1.8.3 of Doxygen, another server based search option has been added. With this option Doxygen
generates the raw data that can be searched and leaves it up to external tools to do the indexing and searching,
meaning that you could use your own indexer and search engine of choice. To make life easier Doxygen ships with
an example indexer (doxyindexer) and search engine (doxysearch.cgi) based onthe Xapian open source search
engine library. Both binaries are included in the distribution but not installed by default; they can be manually copied
from the bin foldertoi.e. /usr/local/binor /var/www/cgi-bin as desired.

To enable this search method set SEARCHENGINE, SERVER_BASED_SEARCH and EXTERNAL_SEARCH all to
YES.

See External Indexing and Searching for configuration details.

Advantages over option 2 are that this method (potentially) scales to very large projects. It is also possible to
combine multiple Doxygen projects and external data into one search index. The way the interaction with the
search engine is done, makes it possible to search from local HTML pages. Also the search results have better
ranking and show context information (if available).

Disadvantages are that is requires a web server that can execute a CGl binary, and an additional indexing step after
running Doxygen.

4. Windows Compiled HTML Help

If you are running Doxygen on Windows, then you can make a compiled HTML Help file (.chm) out of the HTML
files produced by Doxygen. This is a single file containing all HTML files and it also includes a search index. There
are viewers for this format on many platforms, and Windows even supports it natively.

To enable this set GENERATE_HTMLHELP to YES in the configuration file. To let Doxygen compile the HTML
Help file for you, you also need to specify the path to the HTML compiler (hhc.exe) using the HHC_LOCATION
configuration option and the name of the resulting CHM file using CHM_FILE.

An advantage of this method is that the result is a single file that can easily be distributed. It also provides full text
search.

Disadvantages are that compiling the CHM file only works on Windows and requires Microsoft's HTML compiler,
which is not very actively supported by Microsoft. Although the tool works fine for most people, it can sometimes
crash for no apparent reason (how typical).

5. macOS Doc Sets

If you are running Doxygen on macOS 10.5 or higher, then you can make a "doc set" out of the HTML files produced
by Doxygen. A doc set consists of a single directory with a special structure containing the HTML files along with a
precompiled search index. A doc set can be embedded in Xcode (the integrated development environment provided
by Apple).

To enable the creation of doc sets set GENERATE_DOCSET to YES in the configuration file. There are a couple
of other doc set related options you may want to set. After Doxygen has finished you will find a Makefile in the
HTML output directory. Running "make install" on this Makefile will compile and install the doc set. See this
article for more info.

Advantage of this method is that it nicely integrates with the Xcode development environment, allowing for instance
to click on an identifier in the editor and jump to the corresponding section in the Doxygen documentation.

Disadvantage is that it only works in combination with Xcode on macOS.

6. Qt Compressed Help

If you develop for or want to install the Qt application framework, you will get an application called Ot
assistant. Thisis a help viewer for Qt Compressed Help files (. gch).

Generated by Doxygen 1.13.1

https://xapian.org/
https://developer.apple.com/library/archive/featuredarticles/DoxygenXcode/_index.html
https://developer.apple.com/library/archive/featuredarticles/DoxygenXcode/_index.html
https://doc.qt.io/archives/qt-4.8/assistant-manual.html
https://doc.qt.io/archives/qt-4.8/assistant-manual.html

15.1 External Indexing and Searching 73

To enable this feature set GENERATE_QHP to YES. You also need to fill in the other Qt help related options, such
as QHP_NAMESPACE, QHG_LOCATION, QHP_VIRTUAL_FOLDER. See this article for more info.

Feature wise the Qt compressed help feature is comparable with the CHM output, with the additional advantage
that compiling the QCH file is not limited to Windows.

Disadvantage is that it requires setting up a Qt 4.5 (or better) for each user, or distributing the Qt help assistant
along with the documentation, which is complicated by the fact that it is not available as a separate package at this
moment.

7. Eclipse Help Plugin

If you use eclipse, you can embed the documentation generated by Doxygen as a help plugin. It will then appear
as a topic in the help browser that can be started from "Help contents" in the Help menu. Eclipse will generate a
search index for the documentation when you first search for a keyword.

To enable the help plugin set GENERATE_ECLIPSEHELP to YES, and define a unique identifier for your project via
ECLIPSE_DOC_ID, i.e.:

GENERATE_ECLIPSEHELP
ECLIPSE_DOC_ID

YES
com.yourcompany .yourproject

then create the com.yourcompany.yourproject directory (so with the same name as the value of
ECLIPSE_DOC_ID) in the plugin directory of eclipse and after Doxygen completes copy to contents of the
help output directory to the com.yourcompany.yourproject directory. Then restart eclipse to make let it
find the new plugin.

The eclipse help plugin provides similar functionality as the Qt compressed help or CHM output, but it does require
that Eclipse is installed and running.

15.1 External Indexing and Searching

15.1.1 Introduction

With release 1.8.3, Doxygen provides the ability to search through HTML using an external indexing tool and search
engine. This has several advantages:

+ For large projects it can have significant performance advantages over Doxygen's built-in search engine, as
Doxygen uses a rather simple indexing algorithm.

« It allows combining the search data of multiple projects into one index, allowing a global search across multiple
Doxygen projects.

« It allows adding additional data to the search index, i.e. other web pages not produced by Doxygen.
» The search engine needs to run on a web server, but clients can still browse the web pages locally.

To avoid that everyone has to start writing their own indexer and search engine, Doxygen provides an example tool
for each action: doxyindexer for indexing the data and doxysearch . cgi for searching through the index.

The data flow is shown in the following diagram:

Generated by Doxygen 1.13.1

https://doc.qt.io/archives/qq/qq28-qthelp.html#htmlfilesandhelpprojects

74 Searching

doxysearch.db

doxysearch.cgi

query

HTML page
in browser

Figure 15.1: External Search Data Flow

+ doxygen produces the raw search data
+ doxyindexer indexes the data into a search database doxysearch.db

» when a user performs a search from a Doxygen generated HTML page, the CGl binary doxysearch.cgi
will be invoked.

» the doxysearch. cgi tool will perform a query on the database and return the results.

* The browser will show the search results.

15.1.2 Configuring

The first step is to make the search engine available via a web server. If you use doxysearch.cgi this means
making the CGI binary available from the web server (i.e. be able to run it from a browser via an URL starting with
http:)

How to setup a web server is outside the scope of this document, but if you for instance have Apache installed,
you could simply copy the doxysearch.cgi file from Doxygen's bin directory to the cgi-bin directory of the
Apache web server. Read the apache documentation for details.

Totestif doxysearch.cgi is accessible start your web browser and point to URL to the binary and add ?test
at the end

http://yoursite.com/path/to/cgi/doxysearch.cgi?test

You should get the following message:

Test failed: cannot find search index doxysearch.db

If you use Internet Explorer you may be prompted to download a file, which will then contain this message.

Generated by Doxygen 1.13.1

https://en.wikipedia.org/wiki/Common_Gateway_Interface
https://httpd.apache.org/docs/2.2/howto/cgi.html

15.1 External Indexing and Searching 75

Since we didn't create or install a doxysearch.db it is OK for the test to fail for this reason. How to correct this
is discussed in the next section.

Before continuing with the next section add the above URL (without the ?test part) to the SEARCHENGINE_URL
tag in Doxygen's configuration file:

SEARCHENGINE_URL = http://yoursite.com/path/to/cgi/doxysearch.cgi

Single project index

To use the external search option, make sure the following options are enabled in Doxygen's configuration file:

SEARCHENGINE = YES
SERVER_BASED_SEARCH = YES
EXTERNAL_SEARCH = YES

This will make Doxygen generate a file called searchdata.xml in the output directory (configured with
OUTPUT_DIRECTORY). You can change the file name (and location) with the SEARCHDATA_FILE option.

The next step is to put the raw search data into an index for efficient searching. You can use doxyindexer for
this. Simply run it from the command line:

doxyindexer searchdata.xml

This will create a directory called doxysearch . db with some files in it. By default the directory will be created at
the location from which doxyindexer was started, but you can change the directory using the —o option.

Copy the doxysearch.db directory to the same directory as where the doxysearch.cgi is located and
rerun the browser test by pointing the browser to

http://yoursite.com/path/to/cgi/doxysearch.cgi?test

You should now get the following message:

Test successful.

Now you should be able to search for words and symbols from the HTML output.

Multi project index

In case you have more than one Doxygen project and these projects are related, it may be desirable to allow
searching for words in all projects from within the documentation of any of the projects.

To make this possible all that is needed is to combine the search data for all projects into a single index, e.g. for two
projects A and B for which the searchdata.xml is generated in directories project_A and project_B run:

doxyindexer project_A/searchdata.xml project_B/searchdata.xml

and then copy the resulting doxysearch . db to the directory where also doxysearch.cgi is located.

The searchdata.xml file doesn't contain any absolute paths or links, so how can the search results from
multiple projects be linked back to the right documentation set? This is where the EXTERNAL_SEARCH_ID and
EXTRA_SEARCH_MAPPINGS options come into play.

To be able to identify the different projects, one needs to set a unique ID using EXTERNAL_SEARCH_ID for each
project.

To link the search results to the right project, you need to define a mapping per project using the
EXTRA_SEARCH_MAPPINGS tag. With this option to can define the mapping from IDs of other projects to
the (relative) location of documentation of those projects.

So for projects A and B the relevant part of the configuration file could look as follows:

Generated by Doxygen 1.13.1

76 Searching

project_A/Doxyfile
EXTERNAL_SEARCH_ID = A
EXTRA_SEARCH_MAPPINGS = B=../../project_B/html

for project A and for project B

project_B/Doxyfile
EXTERNAL_SEARCH_ID =B
EXTRA_SEARCH_MAPPINGS A=../../project_A/html

with these settings, projects A and B can share the same search database, and the search results will link to the
right documentation set.

15.1.3 Updating the index

When you modify the source code, you should re-run doxygen to get up to date documentation again. When
using external searching you also need to update the search index by re-running doxyindexer. You could wrap
the call to doxygen and doxyindexer together in a script to make this process easier.

15.1.4 Programming interface
Previous sections have assumed you use the tools doxyindexer and doxysearch.cgi to do the indexing
and searching, but you could also write your own index and search tools if you like.

For this 3 interfaces are important

» The format of the input for the index tool.
» The format of the input for the search engine.

» The format of the output of search engine.

The next subsections describe these interfaces in more detail.

Indexer input format

The search data produced by Doxygen follows the Solr XML index message format.

The input for the indexer is an XML file, which consists of one <add> tag containing multiple <doc> tags, which
in turn contain multiple <field> tags.

Here is an example of one doc node, which contains the search data and meta data for one method:

<add>
<doc>

<field name="type">function</field>
<field name="name">0QXmlReader::setDTDHandler</field>
<field name="args"> (QXmlDTDHandler xhandler)=0</field>
<field name="tag">gtools.tag</field>
<field name="url">de/df6/class_qg_xml_reader.html#alOb24blfe26a4c32a8032d68eelddbdba</field>
<field name="keywords">setDTDHandler QXmlReader::setDTDHandler QXmlReader</field>

<field name="text">Sets the DTD handler to handler DTDHandler ()</field>
</doc>

</add>

Each field has a name. The following field names are supported:

Generated by Doxygen 1.13.1

https://cwiki.apache.org/confluence/display/solr/UpdateXmlMessages

15.1 External Indexing and Searching 77

Note

type: the type of the search entry; can be one of: source, function, slot, signal, variable, typedef, enum,
enumvalue, property, event, related, friend, define, file, namespace, concept, group, package, page, dir,
module, constants, library, type, union, interface, protocol category, exception, class, struct, service, singleton

name: the name of the search entry; for a method this is the qualified name of the method, for a class it is the
name of the class, etc.

args: the parameter list (in case of functions or methods)
tag: the name of the tag file used for this project.
url: the (relative) URL to the HTML documentation for this entry.

keywords: important words that are representative for the entry. When searching for such keyword, this entry
should get a higher rank in the search results.

text. the documentation associated with the item. Note that only words are present, no markup.

Due to the potentially large size of the XML file, it is recommended to use a SAX based parser to
process it.

Search URL format

When the search engine is invoked from a Doxygen generated HTML page, a number of parameters are passed to
viathe query string.

The following fields are passed:

g: the query text as entered by the user
n: the number of search results requested.
p: the number of search page for which to return the results. Each page has n values.

cb: the name of the callback function, used for JSON with padding, see the next section.

From the complete list of search results, the range [nxp — nx* (p+1)—1] should be returned.

Here

http

is an example of how a query looks like.

://yoursite.com/path/to/cgi/doxysearch.cgi?g=1ist&n=20&p=1&cb=dummy

It represents a query for the word 'list' (g=11ist) requesting 20 search results (n=20), starting with the result
number 20 (p=1) and using callback 'dummy' (cb=dummy):

Note

The values are URL encoded so they have to be decoded before they can be used.

Search results format

When invoking the search engine as shown in the previous subsection, it should reply with the results. The format of
thereplyis JSON with padding, which is basically a JavaScript struct wrapped in a function call. The name
of function should be the name of the callback (as passed with the cb field in the query).

With the example query as shown the previous subsection the main structure of the reply should look as follows:

Generated by Doxygen 1.13.1

https://en.wikipedia.org/wiki/Simple_API_for_XML
https://en.wikipedia.org/wiki/Query_string
https://en.wikipedia.org/wiki/Percent-encoding
https://en.wikipedia.org/wiki/JSONP

78 Searching

dummy ({
"hits":179,
"first":20,
"count":20,
npageu 01,
"pages":9,
"query” : "list",
"items": [

IR
The fields have the following meaning:
* hits: the total number of search results (could be more than was requested).
« first: the index of first result returned: min(n * p, hits).
- count: the actual number of results returned: min(n, hits — first)
» page: the page number of the result: p
» pages: the total number of pages: [%W

* jtems: an array containing the search data per result.

Here is an example of how the element of the items array should look like:

{"type": "function",
"name": "QDir::entryInfolist (const QString &nameFilter, int filterSpec=DefaultFilter, int sortSpec=DefaultSor
"tag": "gtools.tag",
"url": "d5/d8d/class_qg dir.html#a9439ea6b331957£38dbad981c4d050ef",
"fragments": [
"Returns a list of QFileInfo objects for all files and directories...",

"... pointer to a QFileInfolist The list is owned by the QDir object...",
"... to keep the entries of the list after a subsequent call to this..."
]
}7

The fields for such an item have the following meaning:

* type: the type of the item, as found in the field with name "type" in the raw search data.

» name: the name of the item, including the parameter list, as found in the fields with name "name" and "args"
in the raw search data.

+ fag: the name of the tag file, as found in the field with name "tag" in the raw search data.

» url: the name of the (relative) URL to the documentation, as found in the field with name "url" in the raw
search data.

» "fragments": an array with 0 or more fragments of text containing words that have been search for. These
words should be wrapped in and tags to highlight them in the output.

Generated by Doxygen 1.13.1

Chapter 16

Cu

16.1

16.2
16.3

stomizing the output

Minor Tweaks e e e 79
16.1.1 Overall Color e 79
16.1.2 Navigation e e e e 79
16.1.3 Dynamic Content L 82
16.1.4 Header, Footer, and Stylesheetchanges 82
Changing the layoutof pages 83
Usingthe XML output o L 86

Doxygen provides various levels of customization. The section Minor Tweaks discusses what to do if you want to
do minor tweaking to the look and feel of the output. The section Layout show how to reorder and hide certain
information on a page. The section XML output show how to generate whatever output you want based on the XML
output produced by Doxygen.

16.1

Minor Tweaks

The next subsections describe some aspects that can be tweaked with little effort.

16.1.1

Overall Color

To change the overall color of the HTML output Doxygen provides three options

*« HTML_COLORSTYLE_HUE

*« HTML_COLORSTYLE_SAT

*+ HTML_COLORSTYLE_GAMMA

to change the hue, saturation, and gamma correction of the colors respectively.

For your convenience the GUI frontend Doxywizard has a control that allows you to see the effect of changing the
values of these options on the output in real time.

16.1.2 Navigation

By default, Doxygen will show a title area spanning the full width of the page and below the contents with a navigation

tree as

a sidebar on the left hand side of each HTML page.

This corresponds to the following settings in the Doxyfile:

Generated by Doxygen 1.13.1

80

Customizing the output

« DISABLE_INDEX = YES
+ GENERATE_TREEVIEW = YES

« FULL_SIDEBAR = NO

Logo TiLIE
brief description search
Navigation
tree
Contents
breadcrumbs

you can make the side bar span the whole height of the page using

« DISABLE_INDEX = YES
« GENERATE_TREEVIEW = YES
« FULL_SIDEBAR = YES
Loge TiLIE

brief description

search

Navigation Contents

tree

breadcrumbs

you can also replace the navigation tree by tabs on top of every HTML page, corresponding to the following

settings:

+ DISABLE_INDEX = NO
+ GENERATE_TREEVIEW = NO

Generated by Doxygen 1.13.1

16.1 Minor Tweaks 81

Logo Title

brief description
navigation tabs search

breadcrumbs

Contents

or even have both forms of navigation:

» DISABLE_INDEX = NO
+ GENERATE_TREEVIEW = YES

Logo. Title

brief description

navigation tabs search

Navigation
tree

Contents

breadcrumbs

if you already use an external index (i.e. have one of the following options enabled GENERATE_HTMLHELP,
GENERATE_ECLIPSEHELP, GENERATE_QHP, or GENERATE_DOCSET) then you can also disable all indices,
like so:

« DISABLE_INDEX = YES
+ GENERATE_TREEVIEW = NO

Logo TitlE

brief description

search

breadcrumbs

Contents

Generated by Doxygen 1.13.1

82 Customizing the output

16.1.3 Dynamic Content

To make the HTML output more interactive, Doxygen provides a number of options that are disabled by default:

+ enabling HTML_DYNAMIC_SECTIONS will make Doxygen hide certain content (like graphs) in the HTML by
default, and let the reader expand these sections on request.

 enabling HAVE_DOT along with INTERACTIVE_SVG while setting DOT_IMAGE_FORMAT to svg, will make
Doxygen produce SVG images that will allow the user to zoom and pan (this only happens when the size of
the images exceeds a certain size).

16.1.4 Header, Footer, and Stylesheet changes

To tweak things like fonts or colors, margins, or other look & feel aspects of the HTML output in detail, you can
create a different cascading style sheet. You can also let Doxygen use a custom header and footer for
each HTML page it generates, for instance to make the output conform to the style used on the rest of your web
site.

To do this first run Doxygen as follows:

doxygen -w html header.html footer.html customdoxygen.css
This will create 3 files:

* header.html is a HTML fragment which Doxygen normally uses to start a HTML page. Note that the fragment
ends with a body tag and that is contains a couple of commands of the form $word. These will be replaced
by Doxygen on the fly.

« footer.html is a HTML fragment which Doxygen normally uses to end a HTML page. Also here special com-
mands can be used. This file contain the link to www.doxygen.org and the body and html end tags.

» customdoxygen.css is the default cascading style sheet used by Doxygen. It is recommended only to look
into this file and overrule some settings you like by putting them in a separate stylesheets and referencing
those extra files via HTML_EXTRA_STYLESHEET.

You should edit these files and then reference them from the configuration file.

+ HTML_HEADER = header.html
« HTML_FOOTER = footer.html
« HTML_EXTRA_STYLESHEET =my_customdoxygen.css

Note

it is not longer recommended to use HTML_STYLESHEET, as it make it difficult to upgrade to a newer version
of Doxygen. Use HTML_EXTRA_STYLESHEET instead.

See the documentation of the HTML_HEADER tag for more information about the possible meta commands you
can use inside your custom header.

Note
You should not put the style sheet in the HTML output directory. Treat it as a source file. Doxygen will copy it
for you.

If you use images or other external content in a custom header you need to make sure these end up in the
HTML output directory yourself, for instance by writing a script that runs Doxygen can then copies the images
to the output.

Warning

The structure of headers and footers may change after upgrading to a newer version of Doxygen, so if you are
using a custom header or footer, it might not produce valid output anymore after upgrading.

Generated by Doxygen 1.13.1

https://www.w3schools.com/css/default.asp

16.2 Changing the layout of pages 83

16.2 Changing the layout of pages

In some cases you may want to change the way the output is structured. A different style sheet or custom headers
and footers do not help in such case.

The solution Doxygen provides is a layout file, which you can modify and Doxygen will use to control what information
is presented, in which order, and to some extent also how information is presented. The layout file is an XML file.

The default layout can be generated by Doxygen using the following command:

doxygen -1

optionally the name of the layout file can be specified, if omitted DoxygenLayout . xm1 will be used.

The next step is to mention the layout file in the configuration file (see also LAYOUT_FILE)

LAYOUT_FILE = DoxygenLayout.xml

To change the layout all you need to do is edit the layout file.

The toplevel structure of the file looks as follows:

<doxygenlayout version="1.0">
<navindex>

</navindex>
<class>
</class>
<namespace>
</namespace>
<concept>
</concept>
<file>
</file>
<group>
</group>
<directory>

</directory>
</doxygenlayout>

The root element of the XML file is doxygenlayout, it has an attribute named version, which will be used in
the future to cope with changes that are not backward compatible.

The first section, identified by the navindex element, represents the layout of the navigation tabs displayed
at the top of each HTML page. At the same time it also controls the items in the navigation tree in case
GENERATE_TREEVIEW is enabled. Each tab is represented by a t ab element in the XML file.

You can hide tabs by setting the visible attribute to no. You can also override the default title of a tab by
specifying it as the value of the t it 1le attribute. If the title field is the empty string (the default) then Doxygen will
fill in an appropriate language specific title.

You can reorder the tabs by moving the tab elements in the XML file within the navindex element and even
change the tree structure. Do not change the value of the t ype attribute however. Only a fixed set of types are
supported, each representing a link to a specific index.

You can also add custom tabs using a type with name "user". Here is an example that shows how to add a tab with
title "Google" pointing to www.google.com:

<navindex>
<tab type="user" url="http://www.google.com" title="Google"/>

</navindex>

Generated by Doxygen 1.13.1

84 Customizing the output

The url field can also be a relative URL. If the URL starts with @ref the link will point to a documented entities,
such as a class, a function, a group, or a related page. Suppose we have defined a page using @page with label
mypage, then a tab with label "My Page" to this page would look as follows:
<navindex>
;ééb type="user" url="Q@ref mypage" title="My Page"/>
</navindex>
You can also group tabs together in a custom group using a tab with type "usergroup". The following example puts
the above tabs in a user defined group with title "My Group":
<navindex>
;ééb type="usergroup" title="My Group">
<tab type="user" url="http://www.google.com" title="Google"/>
<tab type="user" url="Q@ref mypage" title="My Page"/>

</tab>

</navindex>

Groups can be nested to form a hierarchy.

By default a usergroup entry in the navigation tree is a link to a landing page with the contents of the group. You
can link to a different page using the ur1l attribute just like you can for the <tab> element and prevent any link
usingurl="[nonel",i.e.

<tab type="usergroup" title="Group without 1link" url="[none]">
</tab>
The elements after navindex represent the layout of the different pages generated by Doxygen:

» The class element represents the layout of all pages generated for documented classes, structs, unions,
and interfaces.

* The namespace element represents the layout of all pages generated for documented namespaces (and
also Java packages).

» The concept element represents the layout of all pages generated for documented concepts.
» The module element represents the layout of all pages generated for documented C++ modules.
» The £ile element represents the layout of all pages generated for documented files.
» The group element represents the layout of all pages generated for documented groups (or topics).
» The directory element represents the layout of all pages generated for documented directories.
Each XML element within one of the above page elements represents a certain piece of information. Some pieces

can appear in each type of page, others are specific for a certain type of page. Doxygen will list the pieces in the
order in which they appear in the XML file.

The following generic elements are possible for each page:

briefdescription
Represents the brief description on a page.

detaileddescription
Represents the detailed description on a page.

The following generic element is possible for each page except the directory page:

Generated by Doxygen 1.13.1

16.2 Changing the layout of pages 85

authorsection
Represents the author section of a page (only used for man pages). This is a separate section for
man pages with a text like: Generated automatically by Doxygen for My Project from
the source code. This should not be misinterpreted with the Doxygen commands \author or \authors
that generate an author paragraph inside a detailed description.

The following generic element is possible for each page except the concept page:

memberdecl
Represents the quick overview of members on a page (member declarations). This elements has child
elements per type of member list. The possible child elements are not listed in detail in the document, but the
name of the element should be a good indication of the type of members that the element represents.

The following generic element is possible for each page except the concept and module page:

memberdef
Represents the detailed member list on a page (member definition). Like the memberdecl element, also
this element has a number of possible child elements.

The class page has the following specific elements:

includes
Represents the include file needed to obtain the definition for this class.

inheritancegraph
Represents the inheritance relations for a class. Note that the CLASS_GRAPH option determines if the
inheritance relation is a list of base and derived classes or a graph.

collaborationgraph
Represents the collaboration graph for a class.

allmemberslink
Represents the link to the list of all members for a class.

usedfiles
Represents the list of files from which documentation for the class was extracted.

The concept page has the following specific elements:

includes
Represents the include file needed to obtain the definition for this class.

definition
Represents the definition of the concept

The £1ile page has the following specific elements:

includes
Represents the list of #include statements contained in this file.

includegraph
Represents the include dependency graph for the file.

includedbygraph
Represents the included by dependency graph for the file.

sourcelink
Represents the link to the source code of this file.

Generated by Doxygen 1.13.1

86 Customizing the output

The module page has a specific exportedmodules element which represents the modules that are exported
from this module.

The group page has a specific groupgraph element which represents the graph showing the dependencies
between groups.

Similarly, the directory page has a specific directorygraph element which represents the graph showing
the dependencies between the directories based on the #include relations of the files inside the directories.

Some elements have a visible attribute which can be used to hide the fragment from the generated output, by
setting the attribute's value to no. You can also use the value of a configuration option to determine the visibility, by
using its name prefixed with a dollar sign, e.g.

<includes visible="$SHOW_INCLUDE_FILES"/>

This was mainly added for backward compatibility. Note that the visible attribute is just a hint for Doxygen. If no
relevant information is available for a certain piece it is omitted even if it is set to yes (i.e. no empty sections are
generated).

Not all elements have a visible attribute shown in the layout file, though this attribute can be used anyway (the
defaultis visible="yes").

Some elements have a title attribute. This attribute can be used to customize the title Doxygen will use as a
header for the piece.

Note that as of doxygen version 1.13.1 and layout version 2.0, Doxygen will insert defaults for elements that are
missing in the user defined layout file. This allows for the introduction of new elements, without having to update the
user defined layout files to make them appear. For older Doxygen or layout versions, missing elements are treated
as being invisible.

16.3 Using the XML output

If the above two methods still do not provide enough flexibility, you can also use the XML output produced by
Doxygen as a basis to generate the output you like. To do this set GENERATE_XML to YES.

The XML output consists of an index file named index.xml which lists all items extracted by Doxygen with
references to the other XML files for details. The structure of the index is described by a schema file index . xsd.
All other XML files are described by the schema file named compound. xsd. If you prefer one big XML file you
can combine the index and the other files using the XSLT file combine.xslt.

You can use any XML parser to parse the files or use the one that can be found in the addon/doxmlparser
directory of Doxygen's source distribution. Look at addon/doxmlparser/doxmlparser/index.py
and addon/doxmlparser/doxmlparser/compound.py for the interface of the parser (it is gener-
ated by generatedDS and follows the XML schema files index.xsd and compound.xsd found in
templates/xml). Look in addon/doxmlparser/examples for examples.

The advantage of using the doxmlparser is that it allows you to only read the index file into memory and then only
those XML files that you implicitly load via navigating through the index. As a result this works even for very large
projects where reading all XML files as one big DOM tree would not fit into memory.

See the Breathe project for an example that uses Doxygen XML output from Python to bridge it with the
Sphinx document generator.

Generated by Doxygen 1.13.1

https://www.davekuhlman.org/generateDS.html
https://github.com/breathe-doc/breathe
http://www.sphinx-doc.org/en/stable/

Chapter 17

Custom Commands

17.1 Simple aliases e 87
17.2 Aliases witharguments L e 87
17.3 Nestingcustomcommand L e 89

Doxygen provides a large number of special commands, XML commands, and HTML commands. that can be used
to enhance or structure the documentation inside a comment block. If you for some reason have a need to define
new commands you can do so by means of an alias definition.

The definition of an alias should be specified in the configuration file using the ALIASES configuration tag.

17.1 Simple aliases

The simplest form of an alias is a simple substitution of the form

name=value

For example defining the following alias:

ALIASES += sideeffect="\par Side Effects: """

will allow you to put the command \sideeffect (or @sideeffect) in the documentation, which will result in
a user-defined paragraph with heading Side Effects:.

Note that you cannot put \n's in the value part of an alias to insert newlines (in the resulting output). You can put
M\ in the value part of an alias to insert a newline as if a physical newline was in the original file.

Note when you need a literal { or } or , (or non default separator) in the value part of an alias you have to escape
it by means of a backslash (\), this can lead to conflicts with the commands \ { and \} for these it is advised to
use the version @ { and @} or use a double escape (\\ { and \\ })

Also note that you can redefine existing special commands if you wish.

Some commands, such as \xrefitem are designed to be used in combination with aliases.

17.2 Aliases with arguments

Aliases can also have one or more arguments. In the alias definition you then need to specify the number of
arguments between curly braces. In the value part of the definition you can place \ x markers, where 'x' represents
the argument number starting with 1.

Here is an example of an alias definition with a single argument:

Generated by Doxygen 1.13.1

88 Custom Commands

ALIASES += 1{1}="\ref \1"

Inside a comment block you can use it as follows

/x* See \1{SomeClass} for more information. =*/

which would be the same as writing

/+x* See \ref SomeClass for more information. =/

Note that you can overload an alias by a version with multiple arguments, for instance:

ALIASES += 1{1}="\ref \1"
ALIASES += 1{2}="\ref \1 \"\2\""

Note that the quotes inside the alias definition have to be escaped with a backslash.

With these alias definitions, we can write

/*+ See \1l{SomeClass, Some Text} for more information. =/

inside the comment block and it will expand to

/x* See \ref SomeClass "Some Text" for more information. x/

where the command with a single argument would still work as shown before.

Aliases can also be expressed in terms of other aliases, e.g. a new command \reminder can be expressed as a
\xrefitem via an intermediate \xref1ist command as follows:

ALIASES += xreflist{3}="\xrefitem \1 \"\2\" \"\3\" "
ALIASES += reminder="\xreflist{reminders,Reminder, Reminders}"

Note that if for aliases with more than one argument a comma is used as a separator, if you want to put a comma
inside the command, you will need to escape it with a backslash, i.e.

\1{SomeClass, Some text\, with an escaped comma}

given the alias definition of \ 1 in the example above.

By default the separator for arguments in an alias is a comma. However, for arguments with a lot of commas, such
as templates of function definitions, escaping each comma can be cumbersome. To solve this, one can specify a
different separator, directly after the parameter count, for example to use a semicolon as separator one can define
the command as follows:

ALIASES += xreflist{3;}="\xrefitem \1 \"\2\" \"\3\" "
ALIASES += reminder="\xreflist{reminders;Reminder;Reminders}"

Note that also multi-character separators are allowed, i.e. the same example can be written using double pipe
symbols as separator:

ALIASES += xreflist{3]||}="\xrefitem \1 \"\2\" \"\3\" "
ALIASES += reminder="\xreflist{reminders||Reminder| |Reminders}"

The following characters are allowed to create separators:

V4S%8, .2 ;: 4=~/

Generated by Doxygen 1.13.1

17.3 Nesting custom command 89

Note that for each command and number of parameters, one can use a different separator. It is not recommended
to select a different separator for same command however, as this may lead to ambiguity as to which command
definition is to be used. Doxygen resolves such ambiguity by choosing the command which matches the most
parameters. Consider the following, rather contrived example:

ALIASES += v{2+}="Choose 2: "\1’ and ’"\2'"
ALIASES += v{3;}="Choose 3: ’\1’, "\2’, and "\3'"

Then

- \v{One+Two}
- \v{One; Two; Three}
— \v{One+Two; Three;Four}

Will produce:

* Choose 2: 'One' and "Two'
e Choose 3: 'One', '"Two', and 'Three'

* Choose 3: 'One+Two', 'Three', and 'Four'

For the last command both definitions of v match, but the one with 3 parameters is selected as it matches more
parameters.

17.3 Nesting custom command

You can use commands as arguments of aliases, including commands defined using aliases.

As an example consider the following alias definitions

ALIASES += Bold{l}="\1"
ALIASES += Emph{l}="\1"

Inside a comment block you can now use:
/*% This is a \Bold{bold \Emph{and} Emphasized} text fragment. =/

which will expand to

/x* This is a bold and Emphasized text fragment. =/

Generated by Doxygen 1.13.1

90

Custom Commands

Generated by Doxygen 1.13.1

Chapter 18

Linking to external documentation

If your project depends on external libraries or tools, there are several reasons to not include all sources for these
with every run of Doxygen:

Disk space:
Some documentation may be available outside of the output directory of Doxygen already, for instance some-
where on the web. You may want to link to these pages instead of generating the documentation in your local
output directory.

Compilation speed:
External projects typically have a different update frequency from your own project. It does not make much
sense to let Doxygen parse the sources for these external project over and over again, even if nothing has
changed.

Memory:
For very large source trees, letting Doxygen parse all sources may simply take too much of your system's
memory. By dividing the sources into several "packages", the sources of one package can be parsed by
Doxygen, while all other packages that this package depends on, are linked in externally. This saves a lot of
memory.

Availability:
For some projects that are documented with Doxygen, the sources may just not be available.

Copyright issues:
If the external package and its documentation are copyright someone else, it may be better - or even nec-
essary - to reference it rather than include a copy of it with your project's documentation. When the author
forbids redistribution, this is necessary. If the author requires compliance with some license condition as a
precondition of redistribution, and you do not want to be bound by those conditions, referring to their copy of
their documentation is preferable to including a copy.

If any of the above apply, you can use Doxygen's tag file mechanism. A tag file is basically a compact representation
of the entities found in the external sources. Doxygen can both generate and read tag files.

To generate a tag file for your project, simply put the name of the tag file after the GENERATE_TAGFILE option in
the configuration file.

To combine the output of one or more external projects with your own project you should specify the name of the
tag files after the TAGFILES option in the configuration file.

A tag file typically only contains a relative location of the documentation from the point where Doxygen was run.
So when you include a tag file in other project you have to specify where the external documentation is located
in relation this project. You can do this in the configuration file by assigning the (relative) location to the tag files
specified after the TAGFILES configuration option. If you use a relative path it should be relative with respect to the
directory where the HTML output of your project is generated; so a relative path from the HTML output directory of
a project to the HTML output of the other project that is linked to.

Generated by Doxygen 1.13.1

92 Linking to external documentation

Example:

Suppose you have a project proj that uses two external projects called ext1 and ext2. The directory
structure looks as follows:

<root>
+- proj
| +- html HTML output directory for proj
| +- src sources for proj
\ |- proj.cpp
+- extl
| +- html HTML output directory for extl
| |- extl.tag tag file for extl
+- ext2
| +- html HTML output directory for ext2
| |- ext2.tag tag file for ext2
|- proj.cfg Doxygen configuration file for proj
|- extl.cfg Doxygen configuration file for extl
|- ext2.cfg Doxygen configuration file for ext2

Then the relevant parts of the configuration files look as follows:

proj.cfg:

OUTPUT_DIRECTORY = proj

INPUT = proj/src

TAGFILES = extl/extl.tag=../../extl/html \
ext2/ext2.tag=../../ext2/html

ext1.cfg:

OUTPUT_DIRECTORY = extl

GENERATE_TAGFILE = extl/extl.tag

ext2.cfg:

OUTPUT_DIRECTORY = ext2

GENERATE_TAGFILE = ext2/ext2.tag

Generated by Doxygen 1.13.1

Chapter 19

Frequently Asked Questions

19.1
19.2
19.3
19.4
19.5
19.6
19.7
19.8
19.9
19.10
19.11
19.12

19.13
19.14

19.15
19.16
19.17
19.18
19.19
19.20
19.21

19.1

My file with a custom extension is not parsed (properly) (anymore).
How can | make Doxygen ignore some code fragment?
How can | change what is after the #include in the class documentation?

How can | use tag files in combination with compressed HTML?

Doxygen automatically generates a link to the class MyClass somewhere in the running text. How do |
prevent that at a certain place?

My favorite programming language is X. Can | still use Doxygen?

Help! | get the cryptic message "input buffer overflow, can't enlarge buffer because scanner uses
REJECT" . . .

How to get information on the index page in HTML?

You should use the \mainpage command inside a comment block like this:

/*! \mainpage My Personal Index Page

*

*+ \section intro_sec Introduction

*

Generated by Doxygen 1.13.1

94 Frequently Asked Questions

This is the introduction.
\section install_sec Installation
\subsection stepl Step 1: Opening the box

etc...

/

L S T

19.2 Help, some/all of the members of my class / file / namespace are not
documented?

Check the following:

1. Is your class / file / namespace documented? If not, it will not be extracted from the sources unless
EXTRACT_ALL is set to YES in the configuration file.

2. Are the members private? If so, you must set EXTRACT_PRIVATE to YES to make them appear in the
documentation.

3. Is there a function macro in your class that does not end with a semicolon (e.g. MY_MACRO())? If so then
you have to instruct Doxygen's preprocessor to remove it.

This typically boils down to the following settings in the configuration file:

ENABLE_PREPROCESSING = YES
MACRO_EXPANSION = YES
EXPAND_ONLY_PREDEF = YES
PREDEFINED = MY_MACRO ()=

Please read the preprocessing section of the manual for more information.

19.3 When | set EXTRACT_ALL to NO none of my functions are shown in
the documentation.

In order for global functions, variables, enums, typedefs, and defines to be documented you should document the
file in which these commands are located using a comment block containing a \file (or @file) command.

Alternatively, you can put all members in a group (or topic) using the \ingroup command and then document the
group using a comment block containing the \defgroup command.

For member functions or functions that are part of a namespace you should document either the class or names-
pace.

19.4 My file with a custom extension is not parsed (properly) (anymore).

Doxygen only parses files that are specified as input (via the INPUT tag) and that match a specified extension
(mentioned in FILE_PATTERNS) The list of files is then reduced by excluding files listed as EXCLUDE or files that
match the patterns set by EXCLUDE_PATTERNS.

In the past Doxygen parsed all files with an unknown extension as C files which could lead to undesired results.
Since version 1.8.8, Doxygen requires that you specify a mapping that tells for a certain file extension, which parser
to use. This mapping is specified using the EXTENSION_MAPPING tag. If no mapping is specified the file's
contents will be ignored.

Generated by Doxygen 1.13.1

19.5 How can | make Doxygen ignore some code fragment? 95

19.5 How can | make Doxygen ignore some code fragment?

The new and easiest way is to add one comment block with a \cond command at the start and one comment block
with a \endcond command at the end of the piece of code that should be ignored. This should be within the same
file of course.

But you can also use Doxygen's preprocessor for this: If you put

#ifndef DOXYGEN_SHOULD_SKIP_THIS
/* code that must be skipped by Doxygen =/

#endif /+ DOXYGEN_SHOULD_SKIP_THIS */

around the blocks that should be hidden and put:

PREDEFINED = DOXYGEN_SHOULD_SKIP_THIS

in the configuration file then all blocks should be skipped by Doxygen as long as ENABLE_PREPROCESSING is
setto YES.

19.6 How can | change what is after the #include in the class
documentation?

In most cases you can use STRIP_FROM_INC_PATH to strip a user defined part of a path.

You can also document your class as follows

/*! \class MyClassName include.h path/include.h
*

* Docs for MyClassName

*/

To make Doxygen put

#include <path/include.h>

in the documentation of the class MyClassName regardless of the name of the actual header file in which the
definition of MyClassName is contained.

If you want Doxygen to show that the include file should be included using quotes instead of angle brackets you
should type:

/*! \class MyClassName myhdr.h "path/myhdr.h"

*
* Docs for MyClassName

*/

19.7 How can | use tag files in combination with compressed HTML?

If you want to refer from one compressed HTML file a . chm to another compressed HTML file called b . chm, the
link in a. chm must have the following format:

Unfortunately this only works if both compressed HTML files are in the same directory.

Generated by Doxygen 1.13.1

96 Frequently Asked Questions

As a result you must rename the generated index.chm files for all projects into something unique and put all
. chm files in one directory.

Suppose you have a project a referring to a project b using tag file b . t ag, then you could rename the index . chm
for project ainto a . chm and the index . chm for project b into b. chm. In the configuration file for project a you
write:

TAGFILES = b.tag=mk:@MSITStore:b.chm::

19.8 I|don't like the quick index that is put above each HTML page, what
do 1 do?

You can disable the index by setting DISABLE_INDEX to YES. Then you can put in your own header file by writing
your own header and feed that to HTML_HEADER.

19.9 The overall HTML output looks different, while | only wanted to use
my own html header file

You probably forgot to include the stylesheet doxygen.css that Doxygen generates. You can include this by
putting

<LINK HREF="doxygen.css" REL="stylesheet" TYPE="text/css">

in the HEAD section of the HTML page.

19.10 Why does Doxygen use Qt?

In the past (prior to version 1.9.2) Doxygen used a part of Qt 2.x for various utility classes. These have been
replaced by STL container classes in the meantime.

The GUI front-end called Doxywizard is based on a modern version of Qt. Doxygen itself can also be used without
the GUL.

19.11 How can | exclude all test directories from my directory tree?

Simply put an exclude pattern like this in the configuration file:

EXCLUDE_PATTERNS = */test/x*

19.12 Doxygen automatically generates a link to the class MyClass
somewhere in the running text. How do | prevent that at a certain
place?

Put a % in front of the class name. Like this: %MyClass. Doxygen will then remove the % and keep the word
unlinked.

Generated by Doxygen 1.13.1

19.13 My favorite programming language is X. Can | still use Doxygen? 97

19.13 My favorite programming language is X. Can | still use Doxygen?

No, not as such; Doxygen needs to understand the structure of what it reads. If you don't mind spending some time
on it, there are several options:

« If the grammar of X is close to C or C++, then it is probably not too hard to tweak src/scanner.1 abit so
the language is supported. This is done for all other languages directly supported by Doxygen (i.e. Java, IDL,
C#, PHP).

« If the grammar of X is somewhat different than you can write an input filter that translates X into something
similar enough to C/C++ for Doxygen to understand (this approach is taken for VB, Object Pascal, and Java«
Script, see https://www.doxygen.org/helpers.html).

« If the grammar is completely different one could write a parser for X and write a backend that produces a
similar syntax tree as is done by src/scanner.1 (and also by src/tagreader.cpp while reading
tag files).

19.14 Help! | get the cryptic message "input buffer overflow, can't
enlarge buffer because scanner uses REJECT"

This error happens when Doxygen's lexical scanner has a rule that matches more than 256K of input characters
in one go. I've seen this happening on a very large generated file (>256K lines), where the built-in preprocessor
converted it into an empty file (with >256K of newlines). Another case where this might happen is if you have lines
in your code with more than 256K characters.

If you have run into such a case and want me to fix it, you should send me a code fragment that triggers the
message. To work around the problem, put some line-breaks into your file, split it up into smaller parts, or exclude
it from the input using EXCLUDE.

Another way to work around this problem is to use the cmake command with the option:

-Denlarge_lex_buffers=<size>

where <size> is the new size of the input (YY_BUF_SIZE) and read (YY_READ_BUF_SIZE) buffer. In case
this option is not given the default value of 262144 (i.e. 256K) will be used.

19.15 When running make in the latex directory | get "TeX capacity
exceeded". Now what?

You can edit the texmf.cfg file to increase the default values of the various buffers and then run "texconfig init".

19.16 Why are dependencies via STL classes not shown in the dot
graphs?

Doxygen is unaware of the STL classes, unless the option BUILTIN_STL_SUPPORT is turned on.

19.17 | have problems getting the search engine to work with PHP5
and/or windows

Please read this for hints on where to look.

Generated by Doxygen 1.13.1

https://www.doxygen.org/helpers.html
searching.html

98 Frequently Asked Questions

19.18 Can | configure Doxygen from the command line?

Not via command line options, but Doxygen can read from stdin, so you can pipe things through it. Here's an ex-
ample how to override an option in a configuration file from the command line (assuming a UNIX like environment):

(cat Doxyfile ; echo "PROJECT_NUMBER=1.0") | doxygen -

For Windows command line the following would do the same:

(type Doxyfile & echo PROJECT_NUMBER=1.0) | doxygen.exe -

For Windows Powershell (checked with version 5.1) the following would do the same:

&{ type Doxyfile ; echo "PROJECT_NUMBER=1.0" } | doxygen -

If multiple options with the same name are specified then Doxygen will use the last one. To append to an existing
option you can use the += operator.

19.19 How did Doxygen get its name?

Doxygen got its name from playing with the words documentation and generator.

documentation -> docs -> dox
generator —-> gen

At the time | was looking into 1ex and yacc, where a lot of things start with "yy", so the "y" slipped in and made
things pronounceable (the proper pronouncement is Docs-ee-gen, so with a long "e").

19.20 What was the reason to develop Doxygen?

| once wrote a GUI widget based on the Qt library (it is still available at https://sourceforge.«
net/projects/gdbttabular/ buthasn't been updated since 2002). Qt had nicely generated documentation
(using an internal tool which they didn't want to release)and | wrote similar docs by hand. This was
a nightmare to maintain, so | wanted a similar tool. | looked at Doc++ but that just wasn't good enough (it didn't
support signals and slots and did not have the Qt look and feel | had grown to like), so | started to write my own
tool...

19.21 How to prevent interleaved output

When redirecting all the console output of Doxygen, i.e. messages and warnings, this can be interleaved or in a
non-expected order. The, technical, reason for this is that the st dout can be buffered. It is possible to overcome
this by means of the —b of Doxygen, like e.g doxygen -b > out.txt 2>&1. Note this might cost a little
more time though.

Generated by Doxygen 1.13.1

https://sourceforge.net/projects/qdbttabular/
https://sourceforge.net/projects/qdbttabular/
https://rant.gulbrandsen.priv.no/udoc/history

Chapter 20

Troubleshooting

20.1 Known Problems

» Doxygen is not a real compiler, it is only a lexical scanner. This means that it can and will not detect errors in
your source code.

» Doxygen has a built-in preprocessor, but this works slightly different than the C preprocessor. Doxygen
assumes a header file is properly guarded against multiple inclusion, and that each include file is standalone
(i.e. it could be placed at the top of a source file without causing compiler errors). As long as this is true (and
this is a good design practice) you should not encounter problems.

« Since it is impossible to test all possible code fragments, it is very well possible, that some valid piece of C/«
C++ code is not handled properly. If you find such a piece, please send it to me, so | can improve Doxygen's
parsing capabilities. Try to make the piece of code you send as small as possible, to help me narrow down
the search.

» Doxygen does not work properly if there are multiple classes, structs or unions with the same name in your
code. It should not crash however, rather it should ignore all of the classes with the same name except one.

+ Some commands do not work inside the arguments of other commands. Inside a HTML link (i.«
e. <AHREF="...">...) for instance other commands (including other HTML commands) do not work!
The sectioning commands are an important exception.

» Redundant braces can confuse Doxygen in some cases. For example:
void £ (int);
is properly parsed as a function declaration, but

const int (a);

is also seen as a function declaration with name int, because only the syntax is analyzed, not the semantics.
If the redundant braces can be detected, as in

int x(a[20]);
then Doxygen will remove the braces and correctly parse the result.

* Not all names in code fragments that are included in the documentation are replaced by links (for instance
when using SOURCE_BROWSER = YES) and links to overloaded members may point to the wrong member.
This also holds for the "Referenced by" list that is generated for each function.

For a part this is because the code parser isn't smart enough at the moment. I'll try to improve this in the future.
But even with these improvements not everything can be properly linked to the corresponding documentation,
because of possible ambiguities or lack of information about the context in which the code fragment is found.

« Itis not possible to insert a non-member function f in a class A using the \relates or \relatesalso command, if
class A already has a member with name f and the same argument list.

Generated by Doxygen 1.13.1

100 Troubleshooting

+ There is only very limited support for member specialization at the moment. It only works if there is a special-
ized template class as well.

+ Not all special commands are properly translated to RTF.

» Version 1.8.6 of dot (and maybe earlier versions too) do not generate proper map files, causing the graphs
that Doxygen generates not to be properly clickable.

» PHP only: Doxygen requires that all PHP statements (i.e. code) is wrapped in a functions/methods, otherwise
you may run into parse problems.

20.2 How to Help

The development of Doxygen highly depends on your input!

If you are trying Doxygen let me know what you think of it (do you miss certain features?). Even if you decide not to
use it, please let me know why.

20.3 How to report a bug

Bugs are tracked in GitHub's issue tracker. Before submittinga new bug, first search through the
database if the same bug has already been submitted by others. If you believe you have found a new bug, please
report it.

If you are unsure whether or not something is a bug, please ask help first (subscription is required) onthe users
mailing listorat Stack Overflow usingthe doxygen label.

If you send only a (vague) description of a bug, you are usually not very helpful and it will cost me much more time
to figure out what you mean. In the worst-case your bug report may even be completely ignored by me, so always
try to include the following information in your bug report:

» The version of Doxygen you are using (for instance 1.5.3, use doxygen --version if you are not sure
or doxygen —-Version for a bit more information).

» The name and version number of your operating system (for instance Ubuntu Linux 18.04 LTS)

+ Itis usually a good idea to send along the configuration file as well, but please use Doxygen with the —s flag
while generating it to keep it small (use doxygen -s -u [configName] to strip the comments from
an existing configuration file. Better even to use the —x or the —x_noenv flag on the used [config«
Name] to get the differences between the used settings and the Doxygen default settings, so doxygen -x
[configName]).

» The easiest (and often the only) way for me to fix bugs is if you can attach a small example demonstrating the
problem you have to the bug report, so | can reproduce it on my machine. Please make sure the example is
valid source code (could potentially compile) and that the problem is really captured by the example (I often
get examples that do not trigger the actual bug!). If you intend to send more than one file please zip or tar the
files together into a single file for easier processing. Note that when reporting a new bug you'll get a chance
to attach a file to it only after submitting the initial bug description.

» Before submitting, consider also running Doxygen with some debugging flags, run doxygen -d for all flags.
The option preprocessor might give you hints on how Doxygen is understanding your input files.

You can (and are encouraged to) add a patch fora reported bug. If you do so, please use "issue #NUMBER
TITLE" as atitleinthe pull request form, where "NUMBER" and "TITLE" refer to the associated issue on
GitHub.

If you have ideas how to fix existing bugs and limitations please discuss them on the developers mailing
1ist (subscription required). Patches can also be sent directly to doxygen@gmail.com if you prefer not to
send them via the bug tracker or mailing list.

Generated by Doxygen 1.13.1

https://github.com/doxygen/doxygen/issues
https://github.com/doxygen/doxygen/issues/new
https://github.com/doxygen/doxygen/issues
https://github.com/doxygen/doxygen/issues/new
https://github.com/doxygen/doxygen/issues/new
https://sourceforge.net/p/doxygen/mailman/
https://sourceforge.net/p/doxygen/mailman/
https://stackoverflow.com/questions/tagged/doxygen
https://github.com/doxygen/doxygen/issues
https://github.com/doxygen/doxygen/compare
https://sourceforge.net/p/doxygen/mailman/
https://sourceforge.net/p/doxygen/mailman/
mailto:doxygen@gmail.com

20.3 How to report a bug 101

For patches please use "diff -uN" or include the files you modified. If you send more than one file please tar or zip
everything, so | only have to save and download one file.

Generated by Doxygen 1.13.1

102 Troubleshooting

Generated by Doxygen 1.13.1

Part Il

Reference Manual

Chapter 21

Features

* Requires very little overhead from the writer of the documentation. Plain text will do, Markdown is support,
and for more fancy or structured output HTML tags and/or some of Doxygen's special commands can be
used.

+ Cross platform: works on Windows and many Unix flavors (including Linux and macQOS).
* Indexes, organizes and generates browsable and cross-referenced output even from undocumented code.
» Generates structured XML output for parsed sources, which can be used by external tools.

» Supports C/C++, Lex, Java, (Corba and Microsoft) Java, Python, VHDL, PHP IDL, C#, Fortran, Objective-C
2.0, and to some extent D sources.

+ Supports documentation of files, namespaces, packages, classes, structs, unions, templates, variables, func-
tions, typedefs, enums and defines.

« Javadoc (1.1), gdoc3 (partially), and ECMA-334 (C# spec.) compatible.

» Comes with a GUI frontend (Doxywizard) to ease editing the options and run Doxygen. The GUI is available
on Windows, Linux, and macOS.

+ Automatically generates class and collaboration diagrams in HTML (as clickable image maps) and IATEX (as
Encapsulated PostScript images).

+ Uses the dot tool of the Graphviz tool kit to generate include dependency graphs, collaboration diagrams,
call graphs, directory structure graphs, and graphical class hierarchy graphs.

« Allows grouping of entities in topics and creating a hierarchy of topics.

+ Flexible comment placement: Allows you to put documentation in the header file (before the declaration of an
entity), source file (before the definition of an entity) or in a separate file.

+ Generates a list of all members of a class (including any inherited members) along with their protection level.

+ Outputs documentation in on-line format (XHTML and UNIX man page) and off-line format (IsTEX and RTF)
simultaneously (any of these can be disabled if desired). All formats are optimized for ease of reading.
Furthermore, compressed HTML can be generated from HTML output using Microsoft's HTML Help Work-
shop (Windows only) and PDF can be generated from the IATEX output.

« Support for various third party help formats including HTML Help, docsets, Qt-Help, and eclipse help.

* Includes a full C preprocessor to allow proper parsing of conditional code fragments and to allow expansion
of all or part of macros definitions.

» Automatically detects public, protected and private sections, as well as the Qt specific signal and slots sec-
tions. Extraction of private class members is optional.

+ Automatically generates references to documented classes, files, namespaces and members. Documentation
of global functions, global variables, typedefs, defines and enumerations is also supported.

Generated by Doxygen 1.13.1

106

Features

References to base/super classes and inherited/overridden members are generated automatically.

Includes a fast, rank based search engine to search for strings or words in the class and member documen-
tation (PHP based).

Includes an JavaScript based live search feature to search for symbols as you type (for small to medium sized
projects).

You can type normal HTML tags in your documentation. Doxygen will convert them to their equivalent IATEX,
RTF, and man-page counterparts automatically.

Allows references to documentation generated for other (Doxygen documented) projects (or another part of
the same project) in a location independent way.

Allows inclusion of source code examples that are automatically cross-referenced with the documentation.

Inclusion of undocumented classes is also supported, allowing to quickly learn the structure and interfaces of
a (large) piece of code without looking into the implementation details.

Allows automatic cross-referencing of (documented) entities with their definition in the source code.
All source code fragments are syntax highlighted for ease of reading.

Allows inclusion of function/member/class definitions in the documentation.

All options are read from an easy to edit and (optionally) annotated configuration file.

Documentation and search engine can be transferred to another location or machine without regenerating the
documentation.

Supports many different character encodings and uses UTF-8 internally and for the generated output.
Doxygen can generate a layout which you can use and edit to change the layout of each page.
There more than a 100 configurable options to fine-tune the output.

Can cope with large projects easily.

Although Doxygen can now be used in any project written in a language that is supported by Doxygen, initially it was
specifically designed to be used for projects that make use of Qt Software's Ot toolkit. | have tried to make
Doxygen ‘Qt-compatible’. That is: Doxygen can read the documentation contained in the Qt source code and create
a class browser that looks quite similar to the one that is generated by Qt Software. Doxygen understands the C++
extensions used by Qt such as signals and slots and many of the markup commands used in the Qt sources.

Doxygen can also automatically generate links to existing documentation that was generated with Doxygen or with
Qt's non-public class browser generator. For a Qt based project this means that whenever you refer to members or
classes belonging to the Qt toolkit, a link will be generated to the Qt documentation. This is done independent of
where this documentation is located!

Generated by Doxygen 1.13.1

https://doc.qt.io

Chapter 22

Doxygen usage

Doxygen is a command line based utility. Calling doxygen with the ——help option at the command line will give
you a brief description of the usage of the program.

All options consist of a leading character —, followed by one character and one or more arguments depending on
the option.

To generate a manual for your project you typically need to follow these steps:

1. You document your source code with special documentation blocks (see section Special comment blocks).
2. You generate a configuration file (see section Configuration) by calling Doxygen with the —g option:
doxygen —-g <config_file>

3. You edit the configuration file so it matches your project. In the configuration file you can specify the input
files and a lot of optional information.

4. You let Doxygen generate the documentation, based on the settings in the configuration file:

doxygen <config_file>

If you have a configuration file generated with an older version of Doxygen, you can upgrade it to the current version
by running Doxygen with the -u option.

doxygen -u <config_file>

All configuration settings in the original configuration file will be copied to the new configuration file. Any new options
will have their default value. Note that comments that you may have added in the original configuration file will be
lost.

22.1 Fine-tuning the output

If you want to fine-tune the way the output looks, Doxygen allows you generate default style sheet, header, and
footer files that you can edit afterwards:

» For HTML output, you can generate the default header file (see HTML_HEADER), the default footer (see
HTML_FOQOTER), and the default style sheet (see HTML_STYLESHEET), using the following command:

doxygen -w html header.html footer.html stylesheet.css <config_file>

The config_fileisoptional. When omitted Doxygen will search for a file named Doxyfile and process
that. When this is also not found it will used the default settings.

Generated by Doxygen 1.13.1

108 Doxygen usage

+ For IATEX output, you can generate the first and last part of refman.tex (see LATEX_HEADER and
LATEX_FOQOTER) and the style sheet included by that header (normally doxygen. sty), using the fol-
lowing command:

doxygen -w latex header.tex footer.tex doxygen.sty <config_file>

If you need non-default options (for instance to use extra IATEX packages) you need to make a configuration
file with those options set correctly and then specify that configuration file after the generated files (make a
backup of the configuration file first so you don't loose it in case you forget to specify one of the output files).

For RTF output, you can generate the default style sheet file (see RTF_STYLESHEET_FILE) using:

doxygen -w rtf rtfstyle.cfg

Warning

When using a custom header you are responsible for the proper inclusion of any scripts and style sheets that
Doxygen needs, which is dependent on the configuration options and may change when upgrading to a new
Doxygen release.

Note

« If you do not want documentation for each item inside the configuration file then you can use the optional
—s option. This can use be used in combination with the —u option, to add or strip the documentation
from an existing configuration file. To get a minimal configuration file use the —x or -x_noenv option
to show only the differences from the default Doxygen configuration file. Please use the —s or —x or
—x_noenv option if you send me a configuration file as part of a bug report or post an issue on GitHub!
(see also: How to report a bug)

» To make Doxygen read/write to standard input/output instead of from/to a file, use — for the file name.

Generated by Doxygen 1.13.1

Chapter 23

Doxywizard usage

Doxywizard is a GUI front-end for configuring and running Doxygen.

When starting Doxywizard one can specify an existing configuration file to use as argument, otherwise the default
settings will be used as a starting point.

When you start Doxywizard it will display the main window (the actual look depends on the platform used).

en GUI frontend

File Settings Help

Specify the working directory from which doxygen will run

| Select...
Configure doxygen using the Wizard and/or Expert tab, then switch to the Run tab to generate the documentation
Wizard Expert Run
Topics))) .)
Provide some information about the project you are documenting
Project
Mede Project name: |I'~"I\,r Project |
Output
Diagrams Project synopsis: | |
Project version or id: | |
Project logo: Select... Mo Project logo selected.
Specify the directory to scan for source code
Source code directory: Select...
[scan recursively
Specify the directory where doxygen should put the generated documentation
Destination directory: Select...
Previous Mext

Welcome to Doxygen

Figure 23.1: Main window

The user interface consists of the following sections:

Generated by Doxygen 1.13.1

110 Doxywizard usage

Menu options
In the menu bar the following parts are available: File menu, Settings menu and Help menu.

Specify the working directory from which Doxygen will run
Using the Select. .. button a directory can be selected. When Doxywizard is started with a configuration
file or one is loaded using the open command (see: File menu) the directory of this settings file used as the
working directory.

Configure Doxygen using the Wizard and/or Expert tab...

Wizard tab
with this tab it is possible to quickly configure the most important settings and leave the rest of the
options to their defaults.

Expert tab
with this tab one gains access to the full set of configuration options.

Run tab
with this tab it is possible to run Doxygen and view the used settings.

Switching between these tabs is possible, e.g you could start with the wizard tab and then fine tune some
settings by switching to the expert tab.

After Doxygen is configured you need to save (see: File menu) the configuration as a file to disk. This allows
Doxygen to use the configuration and also allows running Doxygen again with the same settings at a later point in
time.

Since some configuration options may use relative paths, be sure to select a working directory that is root of those
paths. This is often the root of the source tree and will typically be correctly filled in if the configuration file is stored
at this location as well.

Once the configuration file is saved and the working directory is set, you can run Doxygen based on the selected
settings. Do this by switching to the Run tab, and click the "Run Doxygen" button or by selecting the item "Run
Doxygen" in the Settings menu.

Once Doxygen runs you can cancel it by clicking the same button again. The output produced by Doxygen is
captured and shown in the "Output produced by Doxygen" pane. Once Doxygen finishes, the log can be saved as
a text file.

23.1 Wizard tab

The Wizard tab is divided into two panes

Left pane
The main topics for easy setting up Doxygen. By clicking on a topic the corresponding settings will appear in
the Right pane.

Right pane
The wizard's settings pane, in this pane you will find the settings that are available for the selected topic.

The wizard only gives the possibility to quickly setup Doxygen, for full control one should use the Expert tab.

Generated by Doxygen 1.13.1

23.1 Wizard tab 111

23.1.1 Project settings

The fields in the Project pane speak for themselves. Once Doxygen has finished the Destination directory is where
to look for the results. Doxygen will put each output format in a separate sub-directory by default.

en GUI frontend

File Settings Help

Specify the working directory from which doxygen will run

| Select...
Configure doxygen using the Wizard andor Expert tab, then switch to the Run tab to generate the documentation
Wizard Expert Run
Topics)))) .
Provide some information about the project you are documenting
Project
Made Project name: |M\,r Project |
Output
Diagrams Project synopsis: | |
Project version or id: | |
Project logo: Select... Mo Project logo selected.
Specify the directory to scan for source code
Source code directory: Select...
[scan recursively
Specify the directory where doxygen should put the generated documentation
Destination directory: Select...
Previous Mext

Figure 23.2: Wizard tab: Project settings

Generated by Doxygen 1.13.1

112 Doxywizard usage

23.1.2 Mode of operating

The Mode pane allows you to select how Doxygen will look at your sources. The default is to only look for things
that have been documented. Furthermore, the terminology used in the output can be changed to better match the
main programming language used (this doesn't affect the way Doxygen parses your source code).

en GUI frontend

File Settings Help
Spedfy the working directory from which doxygen will run
| Select...
Configure doxygen using the Wizard andor Expert tab, then switch to the Run tab to generate the documentation
Wizard Expert Run
Topics
Project Select the desired extraction mode:
Mode (®) Documented entities only
Output () All Entities
Diagrams
[] indude cross-referenced source code in the output
Select programming language to optimize the results for
(® Optimize for C++ output
() Optimize for C++/CLI output
O Optimize for Java or C# output
() Optimize for C or PHP output
() Optimize for Fortran output
() Optimize for VHOL output
(") Optimize for SLICE output
Previous Next

Figure 23.3: Wizard tab: Mode of operating

Generated by Doxygen 1.13.1

23.1 Wizard tab

113

23.1.3 Output to produce

The Output pane allows you to select what kinds of output Doxygen will produce. For HTML and IATEX there are

additional options available.

gen GUI frontend

File Settings Help

Spedfy the working directory from which doxygen will run

Wizard Expert Run

Topics
Project
Mode
Output
Diagrams

Configure doxygen using the Wizard andor Expert tab, then switch to the Run tab to generate the documentation

Select the output format(s) to generate
HTML

(®) plain HTML
() with navigation panel
() prepare for compressed HTML {.chm)

With search function

Change color. ..

LaTeX

(®) as intermediate format for hyperlinked PDF
() as intermediate format for PDF

() as intermediate format for PostScript

|:| Man pages

[] rich Text Format (RTF)
I

[] Docbock

Previous

Select...

Mext

Figure 23.4: Wizard tab: Output to produce

Generated by Doxygen 1.13.1

114 Doxywizard usage

23.1.4 Diagrams to generate

Doxygen can produce a number of diagrams. Using the Diagrams pane you can select which ones to generate. For
most diagrams the dot tool of the GraphViz package is needed. This needs to be installed separately.

= Doxygen GUI frontend

File Settings Help
Specify the working directory from which doxygen will run
| Select...
Configure doxygen using the Wizard andor Expert tab, then switch to the Run tab to generate the documentation
Wizard Expert Run
Topics
Project Diagrams to generate
Made () Mo diagrams
Output () Textonly
Lo (®) Use built-in class diagram generator
() Use dot tool from the GraphViz package
Dot graphs to generate
Class graphs
Collaboration diagrams
Overall Class hierarchy
Incude dependency araphs
Induded by dependency graphs
Call graphs
Called by graphs
Previous Next

Figure 23.5: Wizard tab: Diagrams to generate

23.2 Expert tab

The Expert tab is divided into a number of panes:

Top left pane
The Topics pane (i.e. sections in the configuration file) that are available. By clicking on a topic the corre-
sponding settings will appear in the Right pane.

Bottom left pane
The help pane, this will be updated when one hovers over the name of a setting in the Right pane.

Right pane
The Settings pane, in this pane you will find the settings that are available for the selected topic. In case the
name for a setting is colored red, the setting has a non-default value. In case a setting is grayed out, the
setting is depending on another setting that is disabled. Which setting it depends on is indicated in the help
pane on the bottom left.

Generated by Doxygen 1.13.1

https://www.graphviz.org

23.2 Expert tab 115

en GUI frontend

File Settings Help

Spedfy the working directory from which doxygen will run

| Select...

Configure doxygen using the Wizard andor Expert tab, then switch to the Run tab to generate the documentation

Wizard Expert Run

Topics & N
Project DOXYFILE_ENCODING [luTF-8 |
Build FROIECT NAME My Project |
Messages
Input PROJECT_NUMBER | |
Source Browser PROJECT_BRIEF | |
Index .
HTML PROJECT_LOGO (B

e | | @)

LaTeX
RTE Mo Project logo selected.
Man
HML W

DOXYFILE_ENCODING OUTPUT_DIRECTORY | i!;-

This tag spedfies the encoding used for all

characters in the configuration file that follow. CREATE_SUBDIRS O

The default is UTF-8 which is also the encoding ALLOW_UMICODE_MAMES O

used for all text before the first occurrence of .

this tag. Doxygen uses libiconw (or the OUTPUT_LAMGUAGE English hl

iconv builtinto 1ikc) for the transcoding. See

https:/fwww.gnu.orgfsoftwarelibicor/ for QUTRLIT IS T BIRETTN Mone >

the list of possible encodings. BRIEF_MEMBER_DESC

The default value is: TTF-2. REPEAT_BRIEF v

Previous Mext

Figure 23.6: Some options from the Expert tab

The representation of the input field depends on the type of the configuration option.

 For each boolean option (those options that are answered with YES or NO in the configuration file) there is a
check-box. A typical field looks like:

CREATE_SUBDIRS]

+ For items taking one of a fixed set of values (like OUTPUT_LANGUAGE) a combo box is used. A typical field
looks like:

OUTPUT _LANGLAGE English i

For items taking an integer value from a range, a spinbox is used. A typical field looks like:

TAB_SIZFE 4 -

 For free form string-type options there is a one line edit field. A typical field looks like:

WARMN_FORMAT tfile: gline: Stext

Additionally, when the string field should contain a file or a folder name, there are the special buttons ® and

Generated by Doxygen 1.13.1

116

Doxywizard usage

@ that start a file / folder selection dialog. A typical field for a file looks like:

—~
HTML_HEADER.
- | | L 4
and a folder looks like:
oo
HTML_QLUTPUT [
R [html | (mm)
and in case both a file or a folder is allowed, the look is:
PLANTUML_JAR_PATH (B) (m)
_ | | | 1 .] 1]

In case a file represents an image, Doxygen also tries to display the selected image. Then a
looks like:

®

PROJECT LOGO |

Mo Project logo selected.

For options taking a list of strings, an editor field is shown with a non-editable list below it. The

typical field

@ button

adds the string in the editor field to the list and a the @ button removes the selected string from the list. The
@ button can be clicked to replace the selected item in the list with the string entered in the editor field. A

typical field looks like:

~
[}

ABBREVIATE_BRIEF \i; - {éﬁ-

The Sname class -
The Sname widget

The Sname file

is W

additionally when the list contains file and / or folder names, there are special buttons ® and
a file / folder selection dialog. A typical field would for a file looks like:

HTML_EXTRA_FILES ':..';':' '{x;;_,f-"' L:_E’J :-!.-f

and for a folder it looks like

DOTFILE_DIRS :‘b L:J L:;’..f (m)

and in case both files and folders are allowed, the look is:

@ that start

Generated by

Doxygen 1.13.1

23.3 Run tab 117

23.3 Run tab

The run tab gives the possibility to run Doxygen with the given settings, see the HTML results, see the settings used
and save the output as displayed in the output pane.

= Doxygen GUI frontend

File Settings Help

Spedfy the working directory from which doxygen will run

| Select...

Configure doxygen using the Wizard andor Expert tab, then switch to the Run tab to generate the documentation
Wizard Expert Run
Specify additional command line options for running doxygen
Run doscyaen | Status: not running |:| Condensed Save log...
Show HTML output Show configuration

Output produced by doxygen

Figure 23.7: Run tab

Specify additional command line options for running Doxygen
Field to specify extra options used when running Doxygen, e.g. for debugging purposes.
Run Doxygen

When clicked will start running Doxygen. The "Output produced by Doxygen" pane shows the messages
produced by Doxygen while it is running. Before being able to run Doxygen the settings have to be saved.

Show HTML output

Clicking this button will open the main HTML output page in the default browser. The button will be enabled
after Doxygen has finished.

Generated by Doxygen 1.13.1

118 Doxywizard usage

Show configuration
Clicking this button shows the configuration settings that are used when running Doxygen. The results will be
shown in the "Output produced by Doxygen" pane in compact textual form.

Condensed
When checked the "Show configuration” button will only list the configuration settings that differ from the
default settings (analogous to doxygen -x).

Save Log ...
Will save the information from the "Output produced by Doxygen" pane in a file as specified by the user.

23.4 Menu options

23.4.1 File menu

The file menu with a couple of useful items for loading and saving settings.

File Settings Help
Open... Ctrl+0 |
Open recent r D:/Users/doxygen/Project_4/Doxyfile
Save Ctrl+5 D:/Users/doxygen,/Project_3/Doxyfile
Save as... Ctrl+5hift+5 D:/Users/doxygen,/Project_2/Doxyfile
Cluit Ctrl+C D:/Users/doxygen/Project_1/Doxyfile

Figure 23.8: File menu

Open...
Load a configuration file from disk, based on a file selection dialog. In case unsaved settings exist you will be
asked to confirm the action.

Open recent
Quickly load a recently saved configuration file. In case unsaved settings exist you will be asked to confirm
the action. This menu item is only accessible when there are recent files in the list.

Save
Saves a configuration file to disk. In case the configuration file has already been set this file name is used
otherwise a selection dialog will appear. In case the file already exists a confirmation is required.

Save as..
Saves the current configuration settings to disk with a specific name. This file name will become the currently
set file name.

Quit
Leave Doxywizard, in case unsaved settings exist you will be asked to confirm the action.

Generated by Doxygen 1.13.1

23.4 Menu options 119

23.4.2 Settings menu

Filer | Seddinegs | elp
Wewed o finctory defiliy
e currend: sefiinegs i siarip

Cleir receni: lisi:

Hun desoyegen il I

Figure 23.9: Settings menu

Reset to factory defaults
Restores the factory defaults as the default settings to use. You will be asked to confirm the action. This
menu item is only accessible when the current settings differ from the default settings.

Use current settings at startup
Stores the current configuration settings as the default to use next time the GUI is started. You will be asked
to confirm the action.

Clear recent list
Clears the "Open recent" list in the File menu. This menu item is only accessible when there are recent files
in the "Open recent" list.

Run Doxygen
Selecting this item is identical to switching to the Run tab, and clicking the "Run Doxygen" button

23.4.3 Help menu

File Settings = Help
Cnline manual F1

About

Figure 23.10: Help menu

Online Manual
Opens the Doxygen manual from the Doxygen home page in the system defined default HTML browser.

About
Shows an About dialog with version information.

Generated by Doxygen 1.13.1

120 Doxywizard usage

Generated by Doxygen 1.13.1

Chapter 24

Configuration

24.1 Format

A configuration file is a free-form ASCI| text file with a structure that is similar to that of a Make £ 1 1 e, with the default
name Doxyfile. ltis parsed by doxygen. The file may contain tabs and newlines for formatting purposes. The
statements in the file are case-sensitive.

The configuration file essentially consists of a list of assignment statements. Each statement consists of a TAG_«
NAME written in capitals, followed by the equal sign (=) and one or more values. If the same tag is assigned more
than once, the last assignment overwrites any earlier assignment. For tags that take a list as their argument, the +=
operator can be used instead of = to append new values to the list. Values are sequences of non-blanks. If the value
should contain one or more blanks it must be surrounded by quotes (" . . . "). Multiple lines can be concatenated
by inserting a backslash (\) as the last non-whitespace character of a line.

Comments begin with the hash character (#) and end at the end of the line. Comments may be placed anywhere
within the file (except within quotes). Comments beginning with two hash characters (##) are kept while updating
the configuration file when they are placed in front of a TAG_NAME, or at the beginning or end of the configuration
file.

Environment variables can be expanded using the pattern $ (ENV_VARIABLE_NAME) . A small example:

DOT_PATH = $ (YOUR_DOT_PATH)

You can also include part of a configuration file from another configuration file using a @ INCLUDE tag as follows:

@INCLUDE = config_file_name

The include file is searched in the current working directory. You can also specify a list of directories that should
be searched before looking in the current working directory. Do this by putting a @ INCLUDE_PATH tag with these
paths before the @ INCLUDE tag, e.g.:

@INCLUDE_PATH = my_config_dir

The configuration options can be divided into several categories. Below is an alphabetical index of the tags that are
recognized followed by the descriptions of the tags grouped by category.

ABBREVIATE_ BRIEF 24.2 BRIEF_MEMBER DESC 24.2
ALIASES 242 BUILTIN_STL_SUPPORT 242
ALLEXTERNALS 24.18 CALLER GRAPH 24.19
ALLOW_UNICODE_NAMES 242 CALL GRAPHo o 2419
ALPHABETICAL_INDEX 24.7 CASE_SENSE NAMES 243
ALWAYS_DETAILED_SEC 242 CHM_FILE o o 248
AUTOLINK_IGNORE_WORDS 24.2 CHM_INDEX_ENCODING 24.8
AUTOLINK_SUPPORT 242 CITEBIB_ FILES 243
BINARY_TOC 24.8 CLANG_ADD_INC_PATHS 24.6

Generated by Doxygen 1.13.1

122 Configuration
CLANG_ASSISTED_PARSING 24.6 FORMULA_MACROFILE 24.8
CLANG_DATABASE_PATHo 24.6 FORTRAN_COMMENT_AFTER 245
CLANG_OPTIONSo 24.6 FULL_PATH_.NAMES 24.2
CLASS_GRAPH oot 24.19 FULL_SIDEBAR o o oo e e 24.8
COLLABORATION_GRAPH 24.19 GENERATE_AUTOGEN_DEF 24.14
COMPACT_LATEX .« ot e i i 24.9 GENERATE BUGLIST 24.3
COMPACT RTF . . . oot i 24.10 GENERATE CHI oo 24.8
CPP_CLILSUPPORT v 24.2 GENERATE_DEPRECATEDLIST 24.3
CREATE_ SUBDIRSt v e 24.2 GENERATE_DOCBOOKot 24.13
CREATE_SUBDIRS_LEVEL 24.2 GENERATE_DOCSET oo ii e 24.8
DIAFILE DIRSt v it 24.19 GENERATE_ECLIPSEHELP 24.8
DIAPATHo 24.19 GENERATE HTMLot 24.8
DIRECTORY_GRAPHo 24.19 GENERATE_HTMLHELP 24.8
DIR_.GRAPH_MAX DEPTH. 24.19 GENERATE LATEX oot i e e 24.9
DISABLE_INDEXo vitii i 24.8 GENERATE LEGEND 24.19
DISTRIBUTE_GROUP_DOC 24.2 GENERATE_MAN 24.11
DOCBOOK OUTPUT . . . v v o e i e 24.13 GENERATE_PERLMOD 24.16
DOCSET BUNDLE_ID 24.8 GENERATE QHP i 24.8
DOCSET_FEEDNAMEot 24.8 GENERATE RTFo i i 24.10
DOCSET_FEEDURLo tviien o 24.8 GENERATE_SQLITE3t 24.15
DOCSET_PUBLISHER_ID 24.8 GENERATE_TAGFILE i 24.18
DOCSET_PUBLISHER_NAME 24.8 GENERATE_TESTLIST oot 24.3
DOTFILEDIRS . . . v oo e e 24.19 GENERATE_TODOLIST 24.3
DOT_CLEANUP 24.19 GENERATE_TREEVIEW 24.8
DOT_COMMON_ATTR . . . o v oo e 24.19 GENERATE XMLot o i e 24.12
DOT_EDGE ATTR . . o oottt 24.19 GRAPHICAL_HIERARCHY 24.19
DOT_FONTPATHot 24.19 GROUP_GRAPHS 24.19
DOT_GRAPH_MAX_NODES 24.19 GROUP_NESTED_COMPOUNDS 24.2
DOT_IMAGE_FORMAT 24.19 HAVE DOT . . . o 24.19
DOT_MULTI_TARGETSt i o i 24.19 HHC_LOCATIONo 24.8
DOT_NODE_ATTR . . . oottt 24.19 HIDE_COMPOUND_REFERENCE 24.3
DOT_NUM_THREADS 24.19 HIDE_FRIEND_COMPOUNDS 24.3
DOT_PATH . . oo e 24.19 HIDE_IN_.BODY DOCS« ot tot e e e 24.3
DOT_UML_DETAILS 24.19 HIDE_SCOPE_NAMES 24.3
DOT_WRAP_THRESHOLD 24.19 HIDE_UNDOC_CLASSES 24.3
DOXYFILE_ENCODING o oot 24.2 HIDE_UNDOC_MEMBERS 24.3
ECLIPSE_LDOC_ID . . . v oot 24.8 HIDE_UNDOC_NAMESPACES 24.3
ENABLED_SECTIONSt 24.3 HIDE_UNDOC_RELATIONS 24.19
ENABLE_PREPROCESSING 2417 HTML_CODE_FOLDING oot 24.8
ENUM_VALUES_PER_LINE 24.8 HTML_COLORSTYLE oo 24.8
EXAMPLE_PATH 245 HTML_COLORSTYLE_GAMMA 24.8
EXAMPLE_PATTERNSot 24.5 HTML_COLORSTYLE_HUE 24.8
EXAMPLE_RECURSIVE 24.5 HTML_COLORSTYLE_SATot 24.8
EXCLUDE oo 24.5 HTML_COPY_CLIPBOARDot vt 24.8
EXCLUDE_PATTERNSot 245 HTML_DYNAMIC_MENUS 24.8
EXCLUDE_SYMBOLS 24.5 HTML_DYNAMIC_SECTIONS 24.8
EXCLUDE_SYMLINKS 24.5 HTML_EXTRA FILES oot 24.8
EXPAND_AS DEFINEDt 24.17 HTML_EXTRA_STYLESHEET 24.8
EXPAND_ONLY_PREDEF 24.17 HTML_FILE_EXTENSION 24.8
EXTENSION_MAPPING 24.2 HTML_FOOTER oo 24.8
EXTERNAL_GROUPS 24.18 HTML_FORMULA_FORMAT 24.8
EXTERNAL PAGESo 24.18 HTML_HEADER oo 24.8
EXTERNAL_SEARCH.t 24.8 HTML_INDEX_NUM_ENTRIES 24.8
EXTERNAL_SEARCH_ID 24.8 HTML_OUTPUT . . . oot 24.8
EXTERNAL_TOOL PATHt 24.3 HTML_PROJECT_COOKIE 24.8
EXTRACTALL . .o oo 24.3 HTML_STYLESHEET 24.8
EXTRACT_ANON_NSPACES 24.3 IDL_PROPERTY_SUPPORT 24.2
EXTRACT_LOCAL_CLASSES 24.3 IGNORE_PREFIX . . . o v oo e e 24.7
EXTRACT_LOCAL_ METHODS 24.3 IMAGE PATHot 245
EXTRACT_PACKAGEo 24.3 IMPLICIT DIR.DOCS o v to e e 245
EXTRACT PRIVATE 24.3 INCLUDED_BY_GRAPH 24.19
EXTRACT PRIV_VIRTUALot 24.3 INCLUDE_FILE_PATTERNS 24.17
EXTRACT_STATIC . . . o oot 24.3 INCLUDE_GRAPH 24.19
EXTRA_PACKAGESt .. 24.9 INCLUDE_PATH o o oo e 24.17
EXTRA_SEARCH_MAPPINGS 24.8 INHERIT_DOCS o v oot e e 24.2
EXT_LINKS_IN_.WINDOW 24.8 INLINE_GROUPED_CLASSES 24.2
FILE_PATTERNSot 24.5 INLINE_INFO . . . oot 24.3
FILE_VERSION_FILTER 24.3 INLINE_INHERITED_MEMB 24.2
FILTER_PATTERNS« o oo 24.5 INLINE_SIMPLE_STRUCTS 24.2
FILTER_.SOURCE FILESt 24.5 INLINE_ZSOURGCESo ii i 24.6
FILTER_SOURCE_PATTERNS 245 INPUT . oo 245
FORCE_LOCAL_INCLUDES 24.3 INPUT_ENCODING . .« o v oot 245
FORMULA_FONTSIZE i 24.8 INPUT_FILE_ENCODING o oot 245

Generated by Doxygen 1.13.1

24.1 Format

INPUT_FILTER . o ot ooe oo e e 24.5
INTERACGTIVE SVG . .« o o ooe e 24.19
INTERNAL_DOCS . . . o oo 24.3
JAVADOG AUTOBRIEF o oo 24.2
JAVADOG BANNERo 24.2
LATEX BATCHMODE o o oot 24.9
LATEX BIB STYLE . . . v oot et 24.9
LATEX_ CMD_NAMEo 24.9
LATEX_EMOJI DIRECTORY o oot 24.9
LATEX_EXTRA_FILESo oo 24.9
LATEX_EXTRA STYLESHEET oo oo ot 24.9
LATEX_FOOTER . . . o v oo 24.9
LATEX_HEADER oo oooe i 24.9
LATEX_HIDE_INDICESo 24.9
LATEX_MAKEINDEX CMD o oot 24.9
LATEX OUTPUT . o oo oo 24.9
LAYOUT FILE . . o o voo oo 24.3
LOOKUP CACHE SIZEo oo 24.2
MACRO_EXPANSION oo 24.17
MAKEINDEX CMD NAMEot 24.9
MAN_EXTENSION 24.11
MAN LINKS . . oot e e e 24.11
MAN OUTPUT . . o\ oo 24.11
MAN SUBDIR . . . o\ oot e e 24.11
MARKDOWN_ID STYLE o oot 24.2
MARKDOWN_SUPPORT 24.2
MATHJAX_CODEFILE oot 24.8
MATHJAX_EXTENSIONSo 24.8
MATHIAX_FORMAT . . . o oot 24.8
MATHIAX_RELPATH oo 24.8
MATHJAX_VERSION oo 24.8
MAX_DOT GRAPH DEPTHot 24.19
MAX_INITIALIZER_LINESot 24.3
MSCFILE DIRS . . « v o o teee e e 24.19
MSCGEN_TOOL v oo 24.19
MULTILINE_ CPP_IS BRIEF 24.2
NUM_PROC_THREADS 24.2
OBFUSCATE EMAILS o oooe e 24.8
OPTIMIZE_FOR_FORTRAN oo, 24.2
OPTIMIZE_LOUTPUT_FOR.C o o v oo e 24.2
OPTIMIZE_OUTPUT JAVA o o oo 24.2
OPTIMIZE_OUTPUT_SLICE oo .. 24.2
OPTIMIZE_OUTPUT VHDL o oo .. 24.2
OUTPUT DIRECTORY . . . o oo 24.2
OUTPUT LANGUAGE . . . oo ooo i 24.2
PAPER TYPE . . o oo e 24.9
PDF_HYPERLINKSo oooe et 24.9
PERLMOD LATEX . . . v ttooee i 24.16
PERLMOD_MAKEVAR_PREFIX 24.16
PERLMOD PRETTY . . . st oot 24.16
PLANTUMLFILE DIRS oo oo 24.19
PLANTUML CFG_FILEottt 24.19
PLANTUML_INCLUDE PATH . . .« o oo oottt 24.19
PLANTUML JAR PATH oo et 24.19
PREDEFINED . . . o v oo oot 24.17
PROJECT BRIEF . . . oot 24.2
PROJECT ICON . . . oo oo 24.2
PROJECT_LOGO . . . o oo 24.2
PROJECT NAME o o toot e 24.2
PROJECT_NUMBERo 24.2
PYTHON_DOGSTRING . . .« o e oot 24.2
QCH FILE . o o v oo e 24.8
QHG_LOCATION . . o o oo 24.8
QHP_CUST FILTER ATTRS . . . o o oo oo 24.8
QHP_CUST FILTER.NAME oo oo 24.8
QHP_NAMESPACE o oo 24.8
QHP_SECT_FILTER_ATTRS o oo 24.8
QHP_VIRTUAL FOLDER . . .« o oo eeee e 24.8
QT AUTOBRIEF . . o o oo 24.2
QUIET o oo e 24.4
RECURSIVE . . . o o oo e 24.5

REFERENCED_BY_RELATION 24.6
REFERENCES_LINK_SOURCE 24.6
REFERENCES_RELATIONo, 24.6
REPEAT BRIEF . . . o o oo e 24.2
RESOLVE_UNNAMED_PARAMS 24.3
RTF_EXTENSIONS FILEo ovoe e 24.10
RTF_EXTRA FILES o oo 24.10
RTF_HYPERLINKS o oo 24.10
RTF OUTPUT . . o o oo e e 24.10
RTF_STYLESHEET FILEo oo .. 24.10
SEARCHDATA FILE . . . oo oo 24.8
SEARCHENGINE o oooee e 24.8
SEARCHENGINE URL . . . o vvoeee e e 24.8
SEARCH_INCLUDES ot ooo e 24.17
SEPARATE_MEMBER PAGES 24.2
SERVER_BASED_SEARCH 24.8
SHORT NAMES . . o ot oo e e 24.2
SHOW_ENUM VALUESo ovveenn .. 24.8
SHOW_FILES . . . oot e oo e 24.3
SHOW_GROUPED_MEMB_INC 24.3
SHOW_HEADERFILE o ooeee e 24.3
SHOW_INCLUDE FILES o oot 24.3
SHOW_NAMESPACES oo oo 24.3
SHOW USED_FILES oo ee et e 24.3
SIP_SUPPORT . . . v ttee e e 24.2
SITEMAP URL . . .o tte e e 24.8
SKIP_FUNCTION_MACROS ot oee .. 24.17
SORT BRIEF DOCS . .+« o e oo e e 24.3
SORT BY _SCOPE NAME . . . o v ovvee e 24.3
SORT_GROUP_NAMES . . . oo oo e 24.3
SORT_MEMBERS_CTORS 1STo oo ... 24.3
SORT_MEMBER_DOCS e voevee e 24.3
SOURCE BROWSER v oo oo 24.6
SOURCE_TOOLTIPS . . . ot ee e 24.6
SQLITE3 OUTPUT . . ot oo oo e e 24.15
SQLITE3 RECREATE DBo o vee e 24.15
STRICT_PROTO_MATCHINGo \ooee ... 24.3
STRIP_CODE_COMMENTS oo ooee .. 24.6
STRIP_ FROM INC PATH 24.2
STRIP. FROM PATHot 24.2
SUBGROUPING . . .« o e ooe oo e 24.2
TAB SIZE . oo 24.2
TAGFILES . . o oot 24.18
TEMPLATE RELATIONSo oo 24.19
TIMESTAMP . .« o oo ot e e e 24.2
TOC EXPAND . . . o otoe e 24.8
TOC_INCLUDE_HEADINGS oo oo .. 24.2
TREEVIEW WIDTH . .+« oo oo e e oo e 24.8
TYPEDEF HIDES STRUCT oo ooeen .. 24.2
UML_LIMIT NUM_FIELDS o voveeee et 24.19
UML LOOK . . o ovo e 24.19
USE HTAGS . o o oot 24.6
USE MATHIAX © o o oot 24.8
USE_MDFILE_AS MAINPAGEo 24.5
USE_PDFLATEX . . .o teee e 24.9
VERBATIM HEADERSo oot 24.6
WARNINGS . o oo et e e 24.4
WARN AS ERROR . . . o oo ee e 24.4
WARN FORMAT . . o o toe oo 24.4
WARN_IF DOC ERROR . . . « e oo 24.4
WARN_IF_INCOMPLETE DOCo 24.4
WARN_IF_UNDOCUMENTEDo oo .. 24.4
WARN_IF_UNDOC ENUM VAL 24.4
WARN_LAYOUT FILE . . . oot 24.4
WARN_LINE FORMAT . . . o oo 24.4
WARN LOGFILE . . o ot oo 24.4
WARN_NO _PARAMDOC . . .« o oo 24.4
XML_NS MEMB_FILE_SCOPE 24.12
XML OUTPUT . . o oeee e e 24.12
XML_PROGRAMLISTING . . . « o oo v e et 24.12

Generated by Doxygen 1.13.1

124 Configuration

24.2 Project related configuration options

DOXYFILE_ENCODING
This tag specifies the encoding used for all characters in the configuration file that follow. The de-
fault is UTF-8 which is also the encoding used for all text before the first occurrence of this tag. Doxy-
gen uses 1ibiconv (or the iconv built into 1ibc) for the transcoding. See https://www.gnu.«
org/software/libiconv/ for the list of possible encodings.

The default value is: UTF-38.

PROJECT_NAME
The PROJECT_NAME tag is a single word (or a sequence of words surrounded by double-quotes, unless
you are using Doxywizard) that should identify the project for which the documentation is generated. This
name is used in the title of most generated pages and in a few other places.

The default value is: My Project.

PROJECT_NUMBER
The PROJECT_NUMBER tag can be used to enter a project or revision number. This could be handy for
archiving the generated documentation or if some version control system is used.

PROJECT_ BRIEF
Using the PROJECT_BRIEF tag one can provide an optional one line description for a project that appears
at the top of each page and should give viewers a quick idea about the purpose of the project. Keep the
description short.

PROJECT_LOGO
With the PROJECT__LOGO tag one can specify a logo or an icon that is included in the documentation. The
maximum height of the logo should not exceed 55 pixels and the maximum width should not exceed 200
pixels. Doxygen will copy the logo to the output directory.

PROJECT_ICON
With the PROJECT__ICON tag one can specify an icon that is included in the tabs when the HTML document
is shown. Doxygen will copy the logo to the output directory.

OUTPUT_DIRECTORY
The OUTPUT_DIRECTORY tag is used to specify the (relative or absolute) path into which the generated
documentation will be written. If a relative path is entered, it will be relative to the location where Doxygen
was started. If left blank the current directory will be used.

CREATE_SUBDIRS
If the CREATE_SUBDIRS tag is set to YES then Doxygen will create up to 4096 sub-directories (in 2 levels)
under the output directory of each output format and will distribute the generated files over these directories.
Enabling this option can be useful when feeding Doxygen a huge amount of source files, where putting all
generated files in the same directory would otherwise cause performance problems for the file system. Adapt
CREATE_SUBDIRS_LEVEL to control the number of sub-directories.

The default value is: NO.

CREATE_SUBDIRS_LEVEL
Controls the number of sub-directories that will be created when CREATE_SUBDIRS tag is set to YES.
Level O represents 16 directories, and every level increment doubles the number of directories, resulting in
4096 directories at level 8 which is the default and also the maximum value. The sub-directories are organized
in 2 levels, the first level always has a fixed number of 16 directories.

Minimum value: 0, maximum value: 8, default value: 8.
This tag requires that the tag CREATE_SUBDIRS is set to YES.
ALLOW_UNICODE_NAMES
If the ALLOW_UNICODE_NAMES tag is set to YES, Doxygen will allow non-ASCII characters to appear in

the names of generated files. If set to NO, non-ASCII characters will be escaped, for example _xE3_x81_x84
will be used for Unicode U+3044.

The default value is: NO.

Generated by Doxygen 1.13.1

https://www.gnu.org/software/libiconv/
https://www.gnu.org/software/libiconv/

24.2 Project related configuration options 125

OUTPUT_LANGUAGE
The OUTPUT_LANGUAGE tag is used to specify the language in which all documentation generated by
Doxygen is written. Doxygen will use this information to generate all constant output in the proper language.

Possible values are: Afrikaans, Arabic, Armenian, Brazilian, Bulgarian, Catalan,
Chinese, Chinese-Traditional, Croatian, Czech, Danish, Dutch, English (United
States), Esperanto, Farsi (Persian), Finnish, French, German, Greek, Hindi, Hungarian,
Indonesian, Italian, Japanese, Japanese—-en (Japanese with English messages), Korean,
Korean-en (Korean with English messages), Latvian, Lithuanian, Macedonian, Norwegian,
Persian (Farsi), Polish, Portuguese, Romanian, Russian, Serbian, Serbian-Cyrillic,
Slovak, Slovene, Spanish, Swedish, Turkish, Ukrainian and Vietnamese.

The default value is: English.

BRIEF_MEMBER_ DESC
If the BRIEF_MEMBER_DESC tag is set to YES, Doxygen will include brief member descriptions after the
members that are listed in the file and class documentation (similar to Javadoc). Set to NO to disable this.

The default value is: YES.

REPEAT_BRIEF
Ifthe REPEAT_BRIEF tagis setto YES, Doxygen will prepend the brief description of a member or function
before the detailed description
Note: If both HIDE_UNDOC_MEMBERS and BRIEF_MEMBER_DESC are set to NO, the brief descriptions
will be completely suppressed.

The default value is: YES.

ABBREVIATE_BRIEF
This tag implements a quasi-intelligent brief description abbreviator that is used to form the text in various
listings. Each string in this list, if found as the leading text of the brief description, will be stripped from
the text and the result, after processing the whole list, is used as the annotated text. Otherwise, the brief
description is used as-is. If left blank, the following values are used ($name is automatically replaced with the
name of the entity): The $name class,The $name widget, The $name file,is,provides,
specifies, contains, represents, a, an and the.

ALWAYS_ DETAILED SEC
If the ALWAYS_DETAILED_SEC and REPEAT_BRIEF tags are both set to YES then Doxygen will generate
a detailed section even if there is only a brief description.

The default value is: NO.

INLINE_INHERITED_ MEMB
Ifthe INLINE_INHERITED_MEMB tagis setto YES, Doxygen will show all inherited members of a class in
the documentation of that class as if those members were ordinary class members. Constructors, destructors
and assignment operators of the base classes will not be shown.

The default value is: NO.

FULL_PATH_ NAMES
Ifthe FULL_PATH_NAMES tag is set to YES, Doxygen will prepend the full path before files name in the file
list and in the header files. If set to NO the shortest path that makes the file name unique will be used

The default value is: YES.

STRIP_FROM_PATH
The STRIP_FROM_PATH tag can be used to strip a user-defined part of the path. Stripping is only done
if one of the specified strings matches the left-hand part of the path. The tag can be used to show relative
paths in the file list. If left blank the directory from which Doxygen is run is used as the path to strip.
Note that you can specify absolute paths here, but also relative paths, which will be relative from the directory
where Doxygen is started.

This tag requires that the tag FULL_PATH_NAMES is set to YES.
STRIP_FROM_INC_PATH

The STRIP_FROM_INC_PATH tag can be used to strip a user-defined part of the path mentioned in the
documentation of a class, which tells the reader which header file to include in order to use a class. If left

Generated by Doxygen 1.13.1

126 Configuration

blank only the name of the header file containing the class definition is used. Otherwise one should specify
the list of include paths that are normally passed to the compiler using the - T flag.

SHORT_ NAMES
If the SHORT_NAMES tag is set to YES, Doxygen will generate much shorter (but less readable) file names.
This can be useful if your file system doesn't support long names like on DOS, Mac, or CD-ROM.

The default value is: NO.

JAVADOC_AUTOBRIEF
If the JAVADOC_AUTOBRIEF tag is set to YES then Doxygen will interpret the first line (until the first dot,
question mark or exclamation mark) of a Javadoc-style comment as the brief description. If set to NO, the
Javadoc-style will behave just like regular Qt-style comments (thus requiring an explicit @brief command for
a brief description.)

The default value is: NO.

JAVADOC_BANNER
If the JAVADOC_BANNER tag is set to YES then Doxygen will interpret a line such as

[k kK ok ok kK ok ok kK ok ok ok

as being the beginning of a Javadoc-style comment "banner". If set to NO, the Javadoc-style will behave just
like regular comments and it will not be interpreted by Doxygen.

The default value is: NO.

QT AUTOBRIEF
If the QT_AUTOBRIEF tag is set to YES then Doxygen will interpret the first line (until the first dot, question
mark or exclamation mark) of a Qt-style comment as the brief description. If set to NO, the Qt-style will behave
just like regular Qt-style comments (thus requiring an explicit \brief command for a brief description.)

The default value is: NO.

MULTILINE_CPP_IS_BRIEF
The MULTILINE_CPP_IS_BRIEF tag can be setto YES to make Doxygen treat a multi-line C++ special
comment block (i.e. a block of //! or /// comments) as a brief description. This used to be the default
behavior. The new default is to treat a multi-line C++ comment block as a detailed description. Set this tag to
YES if you prefer the old behavior instead.
Note that setting this tag to YES also means that rational rose comments are not recognized any more.

The default value is: NO.

PYTHON_DOCSTRING
By default Python docstrings are displayed as preformatted text and Doxygen's special commands cannot
be used. By setting PYTHON_DOCSTRING to NO the Doxygen's special commands can be used and the
contents of the docstring documentation blocks is shown as Doxygen documentation.

The default value is: YES.
INHERIT_DOCS

If the INHERIT_DOCS tag is set to YES then an undocumented member inherits the documentation from
any documented member that it re-implements.

The default value is: YES.
SEPARATE_MEMBER_ PAGES
If the SEPARATE_MEMBER_PAGES tag is set to YES then Doxygen will produce a new page for each

member. If set to NO, the documentation of a member will be part of the file/class/namespace that contains
it.

The default value is: NO.
TAB_SIZE

The TAB_SIZE tag can be used to set the number of spaces in a tab. Doxygen uses this value to replace
tabs by spaces in code fragments.

Minimum value: 1, maximum value: 16, default value: 4.

Generated by Doxygen 1.13.1

24.2 Project related configuration options 127

ALIASES
This tag can be used to specify a number of aliases that act as commands in the documentation. An alias
has the form:

name=value

For example adding

"sideeffect=@par Side Effects: """

will allow you to put the command \sideeffect (or @sideeffect) in the documentation, which will
result in a user-defined paragraph with heading "Side Effects:". Note that you cannot put \n's in the value part
of an alias to insert newlines (in the resulting output). You can put "\ in the value part of an alias to insert a
newline as if a physical newline was in the original file. When you need a literal { or } or , in the value part of
an alias you have to escape them by means of a backslash (\), this can lead to conflicts with the commands
\ { and \ } for these it is advised to use the version @ { and @} or use a double escape (\\ { and \\ })

OPTIMIZE_OUTPUT_FOR_C
Set the OPTIMIZE_OUTPUT_FOR_C tag to YES if your project consists of C sources only. Doxygen
will then generate output that is more tailored for C. For instance, some of the names that are used will be
different. The list of all members will be omitted, etc.

The default value is: NO.

OPTIMIZE_OUTPUT_JAVA
Set the OPTIMIZE_OUTPUT_JAVA tag to YES if your project consists of Java or Python sources only.
Doxygen will then generate output that is more tailored for that language. For instance, namespaces will be
presented as packages, qualified scopes will look different, etc.

The default value is: NO.

OPTIMIZE FOR_FORTRAN
Set the OPTIMIZE_FOR_FORTRAN tag to YES if your project consists of Fortran sources. Doxygen will
then generate output that is tailored for Fortran.

The default value is: NO.

OPTIMIZE_OUTPUT_VHDL
Set the OPTIMIZE_OUTPUT_VHDL tag to YES if your project consists of VHDL sources. Doxygen will
then generate output that is tailored for VHDL.

The default value is: NO.

OPTIMIZE_OUTPUT_SLICE
Set the OPTIMIZE_OUTPUT_SLICE tag to YES if your project consists of Slice sources only. Doxygen
will then generate output that is more tailored for that language. For instance, namespaces will be presented
as modules, types will be separated into more groups, etc.

The default value is: NO.

EXTENSION_MAPPING

Doxygen selects the parser to use depending on the extension of the files it parses. With this tag you can
assign which parser to use for a given extension. Doxygen has a built-in mapping, but you can override or
extend it using this tag. The format is ext=1anguage, where ext is a file extension, and language is
one of the parsers supported by Doxygen: IDL, Java, JavaScript, Csharp (C#), C, C++, Lex, D, PHP, md
(Markdown), Objective-C, Python, Slice, VHDL, Fortran (fixed format Fortran: FortranFixed, free formatted
Fortran: FortranFree, unknown formatted Fortran: Fortran. In the later case the parser tries to guess whether
the code is fixed or free formatted code, this is the default for Fortran type files).

For instance to make Doxygen treat . inc files as Fortran files (default is PHP), and . £ files as C (default is
Fortran), use: inc=Fortran f=C

Note: For files without extension you can use no_extension as a placeholder.

Note that for custom extensions you also need to set FILE_ PATTERNS otherwise the files are not read by
Doxygen. When specifying no_extension you should add * to the FILE_PATTERNS.

Note see also the list of default file extension mappings.

Generated by Doxygen 1.13.1

128 Configuration

MARKDOWN__ SUPPORT
If the MARKDOWN_SUPPORT tag is enabled then Doxygen pre-processes all comments accord-
ing to the Markdown format, which allows for more readable documentation. See https«
://daringfireball.net/projects/markdown/ for details. The output of markdown processing
is further processed by Doxygen, so you can mix Doxygen, HTML, and XML commands with Markdown
formatting. Disable only in case of backward compatibilities issues.

The default value is: YES.

TOC_INCLUDE_HEADINGS
When the TOC_INCLUDE_HEADINGS tag is set to a non-zero value, all headings up to that level are
automatically included in the table of contents, even if they do not have an id attribute.

Note

This feature currently applies only to Markdown headings.

Minimum value: 0, maximum value: 99, default value: 6.
This tag requires that the tag MARKDOWN_SUPPORT is set to YES.

MARKDOWN_ID_ STYLE
The MARKDOWN_ID_STYLE tag can be used to specify the algorithm used to generate identifiers for the
Markdown headings. Note: Every identifier is unique.

Possible values are: DOXYGEN use a fixed 'autotoc_md' string followed by a sequence number starting
at 0 and GITHUB use the lower case version of title with any whitespace replaced by '-' and punctuation
characters removed.

The default value is: DOXYGEN.
This tag requires that the tag MARKDOWN_SUPPORT is set to YES.

AUTOLINK_ SUPPORT
When enabled Doxygen tries to link words that correspond to documented classes, or namespaces to their
corresponding documentation. Such a link can be prevented in individual cases by putting a % sign in front of
the word or globally by setting AUTOLINK_SUPPORT to NO. Words listed in the AUTOLINK_IGNORE_ «
WORDS tag are excluded from automatic linking.

The default value is: YES.

AUTOLINK_IGNORE_WORDS
This tag specifies a list of words that, when matching the start of a word in the documentation, will suppress
auto links generation, if it is enabled via AUTOLINK_SUPPORT. This list does not affect affect links explicitly
created using # or the \link or \ref commands.

This tag requires that the tag AUTOLINK_SUPPORT is set to YES.

BUILTIN_STL_SUPPORT
If you use STL classes (i.e. std::string, std::vector, etc.) but do not want to include (a tag file
for) the STL sources as input, then you should set this tag to YES in order to let Doxygen match functions
declarations and definitions whose arguments contain STL classes (e.g. func (std: :string); versus
func (std::string) {}). This also makes the inheritance and collaboration diagrams that involve STL
classes more complete and accurate.

The default value is: NO.
CPP_CLI_SUPPORT
If you use Microsoft's C++/CLI language, you should set this option to YES to enable parsing support.
The default value is: NO.
SIP_SUPPORT
Set the STP_SUPPORT tag to YES if your project consists of sip sources only. Doxygen will parse

them like normal C++ but will assume all classes use public instead of private inheritance when no explicit
protection keyword is present.

The default value is: NO.

Generated by Doxygen 1.13.1

https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://www.riverbankcomputing.com/software

24.2 Project related configuration options 129

IDL_PROPERTY_ SUPPORT
For Microsoft's IDL there are propget and propput attributes to indicate getter and setter methods for a
property. Setting this option to YES will make Doxygen to replace the get and set methods by a property in
the documentation. This will only work if the methods are indeed getting or setting a simple type. If this is not
the case, or you want to show the methods anyway, you should set this option to NO.

The default value is: YES.

DISTRIBUTE_GROUP_DOC
If member grouping is used in the documentation and the DISTRIBUTE_GROUP_DOC tag is set to YES
then Doxygen will reuse the documentation of the first member in the group (if any) for the other members of
the group. By default all members of a group must be documented explicitly.

The default value is: NO.

GROUP_NESTED_ COMPOUNDS
If one adds a struct or class to a group and this option is enabled, then also any nested class or struct is
added to the same group. By default this option is disabled and one has to add nested compounds explicitly
via \ingroup.

The default value is: NO.

SUBGROUPING
Set the SUBGROUP ING tag to YES to allow class member groups of the same type (for instance a group of
public functions) to be put as a subgroup of that type (e.g. under the Public Functions section). Set it to NO
to prevent subgrouping. Alternatively, this can be done per class using the \nosubgrouping command.

The default value is: YES.

INLINE_ GROUPED_CLASSES
When the INLINE_GROUPED_CLASSES tag is set to YES, classes, structs and unions are shown inside
the group in which they are included (e.g. using \ingroup) instead of on a separate page (for HTML and Man
pages) or section (for IATEX and RTF).
Note that this feature does not work in combination with SEPARATE_MEMBER_PAGES.

The default value is: NO.

INLINE_SIMPLE_STRUCTS
When the INLINE_SIMPLE_STRUCTS tag is set to YES, structs, classes, and unions with only public
data fields or simple typedef fields will be shown inline in the documentation of the scope in which they are
defined (i.e. file, namespace, or group documentation), provided this scope is documented. If set to NO,
structs, classes, and unions are shown on a separate page (for HTML and Man pages) or section (for IKTEX
and RTF).

The default value is: NO.

TYPEDEF_HIDES_ STRUCT
When TYPEDEF_HIDES_STRUCT tag is enabled, a typedef of a struct, union, or enum is documented
as struct, union, or enum with the name of the typedef. So typedef struct TypeS {} TypeT, will
appear in the documentation as a struct with name TypeT. When disabled the typedef will appear as a
member of a file, namespace, or class. And the struct will be named TypeS. This can typically be useful for
C code in case the coding convention dictates that all compound types are typedef'ed and only the typedef is
referenced, never the tag name.

The default value is: NO.

LOOKUP_CACHE_SIZE

The size of the symbol lookup cache can be set using LOOKUP_CACHE_SIZE. This cache is used to
resolve symbols given their name and scope. Since this can be an expensive process and often the same
symbol appears multiple times in the code, Doxygen keeps a cache of pre-resolved symbols. If the cache is
too small Doxygen will become slower. If the cache is too large, memory is wasted. The cache size is given
by this formula: 2(16+LOOKUP_CACHE_SIZE) The valid range is 0..9, the default is 0, corresponding to a
cache size of 216 = 65536 symbols. At the end of a run Doxygen will report the cache usage and suggest the
optimal cache size from a speed point of view.

Minimum value: 0, maximum value: 9, default value: 0.

Generated by Doxygen 1.13.1

130 Configuration

NUM_PROC_THREADS
The NUM_PROC_THREADS specifies the number of threads Doxygen is allowed to use during processing.
When set to 0 Doxygen will based this on the number of cores available in the system. You can set it explicitly
to a value larger than 0 to get more control over the balance between CPU load and processing speed. At
this moment only the input processing can be done using multiple threads. Since this is still an experimental
feature the default is set to 1, which effectively disables parallel processing. Please report any issues you
encounter. Generating dot graphs in parallel is controlled by the DOT_NUM_THREADS setting.

Minimum value: 0, maximum value: 32, default value: 1.
TIMESTAMP

If the TIMESTAMP tag is set different from NO then each generated page will contain the date or date and
time when the page was generated. Setting this to NO can help when comparing the output of multiple runs.

Possible values are: YES, NO, DATETIME and DATE.
The default value is: NO.

24.3 Build related configuration options

EXTRACT ALL
If the EXTRACT_ALL tag is set to YES, Doxygen will assume all entities in documentation are documented,
even if no documentation was available. Private class members and static file members will be hidden unless
the EXTRACT_PRIVATE respectively EXTRACT_STATIC tags are set to YES.

Note

This will also disable the warnings about undocumented members that are normally produced when
WARNINGS is set to YES.

The default value is: NO.

EXTRACT_PRIVATE
If the EXTRACT_PRIVATE tag is set to YES, all private members of a class will be included in the docu-
mentation.

The default value is: NO.

EXTRACT PRIV_VIRTUAL
If the EXTRACT_PRIV_VIRTUAL tag is set to YES, documented private virtual methods of a class will be
included in the documentation.

The default value is: NO.

EXTRACT_PACKAGE
If the EXTRACT_PACKAGE tag is set to YES, all members with package or internal scope will be included
in the documentation.

The default value is: NO.

EXTRACT STATIC
Ifthe EXTRACT_STATIC tagis setto YES, all static members of a file will be included in the documentation.

The default value is: NO.

EXTRACT_ LOCAL_CLASSES
If the EXTRACT_LOCAL_CLASSES tag is set to YES, classes (and structs) defined locally in source files
will be included in the documentation. If set to NO, only classes defined in header files are included. Does
not have any effect for Java sources.

The default value is: YES.
EXTRACT_LOCAL_METHODS
This flag is only useful for Objective-C code. If set to YES, local methods, which are defined in the imple-

mentation section but not in the interface are included in the documentation. If set to NO, only methods in the
interface are included.

The default value is: NO.

Generated by Doxygen 1.13.1

24.3 Build related configuration options 131

EXTRACT_ANON_NSPACES
If this flag is set to YES, the members of anonymous namespaces will be extracted and appear in the
documentation as a namespace called 'anonymous_namespaceffile}', where file will be replaced with the
base name of the file that contains the anonymous namespace. By default anonymous namespace are
hidden.

The default value is: NO.

RESOLVE_UNNAMED_PARAMS
If this flag is set to YES, the name of an unnamed parameter in a declaration will be determined by the
corresponding definition. By default unnamed parameters remain unnamed in the output.

The default value is: YES.

HIDE_UNDOC_MEMBERS
If the HIDE_UNDOC_MEMBERS tag is set to YES, Doxygen will hide all undocumented members inside
documented classes or files. If set to NO these members will be included in the various overviews, but no
documentation section is generated. This option has no effect if EXTRACT_ALL is enabled.

The default value is: NO.

HIDE_UNDOC_CLASSES
If the HIDE_UNDOC_CLASSES tag is set to YES, Doxygen will hide all undocumented classes that are
normally visible in the class hierarchy. If set to NO, these classes will be included in the various overviews.
This option will also hide undocumented C++ concepts if enabled. This option has no effect if EXTRACT_ALL
is enabled.

The default value is: NO.

HIDE_UNDOC_NAMESPACES
If the HIDE_UNDOC_NAMESPACES tag is set to YES, Doxygen will hide all undocumented namespaces
that are normally visible in the namespace hierarchy. If set to NO, these namespaces will be included in the
various overviews. This option has no effect if EXTRACT_ALL is enabled.

The default value is: YES.

HIDE_FRIEND_COMPOUNDS
If the HIDE_FRIEND_COMPOUNDS tag is set to YES, Doxygen will hide all friend declarations. If set to NO,
these declarations will be included in the documentation.

The default value is: NO.

HIDE_ IN_BODY DOCS
If the HIDE_IN_BODY_DOCS tag is set to YES, Doxygen will hide any documentation blocks found inside
the body of a function. If set to NO, these blocks will be appended to the function's detailed documentation
block.

The default value is: NO.

INTERNAL_DOCS
The INTERNAL_DOCS tag determines if documentation that is typed after a \internal command is included.
If the tag is set to NO then the documentation will be excluded. Set it to YES to include the internal documen-
tation.

The default value is: NO.

CASE_SENSE_NAMES
With the correct setting of option CASE__SENSE_NAME S Doxygen will better be able to match the capabilities
of the underlying filesystem.

In case the filesystem is case sensitive (i.e. it supports files in the same directory whose names only differ in
casing), the option must be set to YES to properly deal with such files in case they appear in the input.

For filesystems that are not case sensitive the option should be set to NO to properly deal with output files
written for symbols that only differ in casing, such as for two classes, one named CLASS and the other named
Class, and to also support references to files without having to specify the exact matching casing.

On Windows (including Cygwin) and macQOS, users should typically set this option to NO, whereas on Linux
or other Unix flavors it should typically be set to YES.

Generated by Doxygen 1.13.1

132 Configuration

Possible values are: SYSTEM, NO and YES.
The default value is: SYSTEM.

HIDE_SCOPE_NAMES
If the HIDE__SCOPE_NAMES tag is set to NO then Doxygen will show members with their full class and
namespace scopes in the documentation. If set to YES, the scope will be hidden.

The default value is: NO.

HIDE_ COMPOUND_REFERENCE
If the HIDE_COMPOUND_REFERENCE tag is set to NO (default) then Doxygen will append additional text
to a page's title, such as Class Reference. If set to YES the compound reference will be hidden.

The default value is: NO.

SHOW_HEADERFILE
If the SHOW_HEADERFILE tag is set to YES then the documentation for a class will show which file needs
to be included to use the class.

The default value is: YES.

SHOW_INCLUDE_FILES
If the SHOW_INCLUDE_FILES tag is setto YES then Doxygen will put a list of the files that are included
by a file in the documentation of that file.

The default value is: YES.

SHOW_GROUPED_MEMB_ INC
If the SHOW_GROUPED_MEMB_ INC tag is set to YES then Doxygen will add for each grouped member an
include statement to the documentation, telling the reader which file to include in order to use the member.

The default value is: NO.

FORCE_LOCAL_INCLUDES
If the FORCE_LOCAL_INCLUDES tag is set to YES then Doxygen will list include files with double quotes
in the documentation rather than with sharp brackets.

The default value is: NO.

INLINE_INFO
Ifthe INLINE_INFOtagis setto YES then a tag [inline] is inserted in the documentation for inline members.

The default value is: YES.

SORT_MEMBER DOCS
If the SORT_MEMBER_DOCS tag is set to YES then Doxygen will sort the (detailed) documentation of file

and class members alphabetically by member name. If set to NO, the members will appear in declaration
order.

The default value is: YES.

SORT_BRIEF_DOCS
If the SORT_BRIEF_DOCS tag is set to YES then Doxygen will sort the brief descriptions of file, namespace
and class members alphabetically by member name. If set to NO, the members will appear in declaration
order. Note that this will also influence the order of the classes in the class list.

The default value is: NO.

SORT_ MEMBERS_CTORS_1ST
If the SORT_MEMBERS_CTORS_1ST tag is set to YES then Doxygen will sort the (brief and detailed) docu-
mentation of class members so that constructors and destructors are listed first. If set to NO the constructors
will appear in the respective orders defined by SORT_BRIEF_DOCS and SORT_MEMBER_DOCS.

Generated by Doxygen 1.13.1

24.3 Build related configuration options 133

Note

If SORT_BRIEF_DOCS is set to NO this option is ignored for sorting brief member documentation.

If SORT_MEMBER_DOCS is set to NO this option is ignored for sorting detailed member documenta-
tion.

The default value is: NO.

SORT_GROUP_NAMES
If the SORT_GROUP_NAMES tag is set to YES then Doxygen will sort the hierarchy of group names into
alphabetical order. If set to NO the group names will appear in their defined order.

The default value is: NO.

SORT_BY_SCOPE_NAME
If the SORT_BY_SCOPE_NAME tag is set to YES, the class list will be sorted by fully-qualified names, in-
cluding namespaces. If setto NO, the class list will be sorted only by class name, not including the namespace
part.

Note

This option is not very useful if HIDE_SCOPE_NAMES is set to YES.
This option applies only to the class list, not to the alphabetical list.

The default value is: NO.

STRICT_PROTO_MATCHING
If the STRICT_PROTO_MATCHING option is enabled and Doxygen fails to do proper type resolution of all
parameters of a function it will reject a match between the prototype and the implementation of a member
function even if there is only one candidate or it is obvious which candidate to choose by doing a simple string
match. By disabling STRICT_PROTO_MATCHING Doxygen will still accept a match between prototype and
implementation in such cases.

The default value is: NO.

GENERATE_TODOLIST
The GENERATE_TODOLIST tag can be used to enable (YES) or disable (NO) the todo list. This list is
created by putting \todo commands in the documentation.

The default value is: YES.

GENERATE_TESTLIST
The GENERATE_TESTLIST tag can be used to enable (YES) or disable (NO) the test list. This list is
created by putting \test commands in the documentation.

The default value is: YES.

GENERATE_BUGLIST
The GENERATE_BUGLIST tag can be used to enable (YES) or disable (NO) the bug list. This list is created
by putting \bug commands in the documentation.

The default value is: YES.

GENERATE_DEPRECATEDLIST
The GENERATE_DEPRECATEDLIST tag can be used to enable (YES) or disable (NO) the deprecated list.
This list is created by putting \deprecated commands in the documentation.

The default value is: YES.

ENABLED_ SECTIONS
The ENABLED_SECTIONS tag can be used to enable conditional documentation sections, marked by \if
<section_label> ... \endif and \cond <section_label> ... \endcond blocks.

MAX INITIALIZER LINES
The MAX_INITIALIZER_LINES tag determines the maximum number of lines that the initial value of a
variable or macro / define can have for it to appear in the documentation. If the initializer consists of more
lines than specified here it will be hidden. Use a value of 0 to hide initializers completely. The appearance of

Generated by Doxygen 1.13.1

134 Configuration

the value of individual variables and macros / defines can be controlled using \showinitializer or \hideinitializer
command in the documentation regardless of this setting.

Minimum value: 0, maximum value: 10000, default value: 30.

SHOW_USED_FILES
Set the SHOW_USED_FILES tag to NO to disable the list of files generated at the bottom of the docu-
mentation of classes and structs. If set to YES, the list will mention the files that were used to generate the
documentation.

The default value is: YES.

SHOW_FILES
Set the SHOW_FILES tag to NO to disable the generation of the Files page. This will remove the Files entry
from the Quick Index and from the Folder Tree View (if specified).

The default value is: YES.

SHOW_NAMESPACES
Set the SHOW_NAMESPACES tag to NO to disable the generation of the Namespaces page. This will remove
the Namespaces entry from the Quick Index and from the Folder Tree View (if specified).

The default value is: YES.

FILE VERSION_FILTER
The FILE_VERSION_FILTER tag can be used to specify a program or script that Doxygen should invoke
to get the current version for each file (typically from the version control system). Doxygen will invoke the
program by executing (via popen ()) the command command input-file, where command is the
value of the FILE_VERSION_FILTER tag, and input—-file is the name of an input file provided by
Doxygen. Whatever the program writes to standard output is used as the file version.

Example of using a shell script as a filter for Unix:

FILE_VERSION_FILTER = "/bin/sh versionfilter.sh"

Example shell script for CVS:

#!/bin/sh
cvs status $1 | sed -n ’s/*[\]*Working revision:[\t]*\([0-9][0-9\.]1*\).*x/\1/p”’

Example shell script for Subversion:

#!/bin/sh
svn stat -v $1 | sed -n 's/~[A-Z2\x|!]\{1,15\}/x/;s/ \{1,15\}/\/x/;s/ .*//p’

Example filter for ClearCase:

FILE_VERSION_FILTER = "cleartool desc —fmt \%vn"

LAYOUT FILE

The LAYOUT_FILE tag can be used to specify a layout file which will be parsed by Doxygen. The layout
file controls the global structure of the generated output files in an output format independent way. To create
the layout file that represents Doxygen's defaults, run Doxygen with the —1 option. You can optionally specify
a file name after the option, if omitted DoxygenLayout . xml will be used as the name of the layout file.
See also section Changing the layout of pages for information.

Note that if you run Doxygen from a directory containing a file called DoxygenLayout . xm1, Doxygen will
parse it automatically even if the LAYOUT_F ILE tag is left empty.

CITE_BIB_FILES
The CITE_BIB_FILES tag can be used to specify one or more bib files containing the reference defi-
nitions. This must be a list of .bib files. The .bib extension is automatically appended if omitted. This
requires the bibtex tool to be installed. See also https://en.wikipedia.org/wiki/BibTeX
for more info. For IATEX the style of the bibliography can be controlled using LATEX_BIB_STYLE. To use
this feature you need bibtex and perl available in the search path. See also \cite for info how to create
references.

Generated by Doxygen 1.13.1

https://en.wikipedia.org/wiki/BibTeX

24.4 Configuration options related to warning and progress messages 135

EXTERNAIL TOOL_PATH
The EXTERNAL_TOOL_PATH tag can be used to extend the search path (PATH environment variable) so
that external tools such as 1atex and gs can be found.

Note

Directories specified with EXTERNAL_TOOL_PATH are added in front of the path already specified by
the PATH variable, and are added in the order specified.

This option is particularly useful for macOS version 14 (Sonoma) and higher, when running Doxygen
from Doxywizard, because in this case any user-defined changes to the PATH are ignored. A typical
example on macOS is to set

EXTERNAL_TOOL_PATH = /Library/TeX/texbin /usr/local/bin

together with the standard path, the full search path used by doxygen when launching external tools will
then become

PATH=/Library/TeX/texbin:/usr/local/bin:/usr/bin:/bin:/usr/sbin:/sbin

24.4 Configuration options related to warning and progress messages

QUIET
The QUIET tag can be used to turn on/off the messages that are generated to standard output by Doxygen.
If QUIET is set to YES this implies that the messages are off.

The default value is: NO.

WARNINGS
The WARNINGS tag can be used to turn on/off the warning messages that are generated to standard error
(stderr) by Doxygen. If WARNINGS is setto YES this implies that the warnings are on.
Tip: Turn warnings on while writing the documentation.

The default value is: YES.

WARN_IF_UNDOCUMENTED
Ifthe WARN__TF_UNDOCUMENTED tag is set to YES then Doxygen will generate warnings for undocumented
members. If EXTRACT_ALL is set to YES then this flag will automatically be disabled.

The default value is: YES.

WARN_IF DOC_ERROR
If the WARN_IF_DOC_ERROR tag is set to YES, Doxygen will generate warnings for potential errors in
the documentation, such as documenting some parameters in a documented function twice, or documenting
parameters that don't exist or using markup commands wrongly.

The default value is: YES.

WARN_IF INCOMPLETE_DOC
If WARN_TIF_INCOMPLETE_DOC is setto YES, Doxygen will warn about incomplete function parameter
documentation. If set to NO, Doxygen will accept that some parameters have no documentation without
warning.

The default value is: YES.

WARN_NO_PARAMDOC
This WARN_NO_PARAMDOC option can be enabled to get warnings for functions that are documented, but
have no documentation for their parameters or return value. If set to NO, Doxygen will only warn about wrong
parameter documentation, but not about the absence of documentation. If EXTRACT_ALL is set to YES then
this flag will automatically be disabled. See also WARN_IF_INCOMPLETE_DOC

The default value is: NO.
WARN_IF UNDOC_ENUM VAL
If WARN_IF_UNDOC_ENUM_VAL option is set to YES, Doxygen will warn about undocumented enumera-

tion values. If set to NO, Doxygen will accept undocumented enumeration values. If EXTRACT_ALL is set to
YES then this flag will automatically be disabled.

The default value is: NO.

Generated by Doxygen 1.13.1

136 Configuration

WARN_LAYOUT FILE
If WARN_LAYOUT_FILE option is set to YES, Doxygen will warn about issues found while parsing the user
defined layout file, such as missing or wrong elements. See also LAYOUT_FILE for details. If set to NO,
problems with the layout file will be suppressed.

The default value is: YES.

WARN_AS_ERROR

If the WARN_AS_ERROR tag is set to YES then Doxygen will immediately stop when a warning is encoun-
tered. If the WARN_AS_ERROR tag is set to FAIL_ON_WARNINGS then Doxygen will continue running
as if WARN_AS_ERROR tag is set to NO, but at the end of the Doxygen process Doxygen will return with
a non-zero status. If the WARN_AS_ERROR tag is set to FAIL_ON_WARNINGS_PRINT then Doxygen
behaves like FAIL_ON_WARNINGS but in case no WARN_LOGFILE is defined Doxygen will not write the
warning messages in between other messages but write them at the end of a run, in case a WARN_LOGFILE
is defined the warning messages will be besides being in the defined file also be shown at the end of a run,
unless the WARN_LOGFILE is defined as - i.e. standard output (stdout) in that case the behavior will
remain as with the setting FAIL_ON_WARNINGS.

Possible values are: NO, YES, FATI,_ ON_WARNINGS and FATL_ON_WARNINGS_PRINT.
The default value is: NO.
WARN_FORMAT
The WARN_FORMAT tag determines the format of the warning messages that Doxygen can produce. The
string should containthe $file, $1ine, and $text tags, which will be replaced by the file and line number

from which the warning originated and the warning text. Optionally the format may contain $version, which
will be replaced by the version of the file (if it could be obtained via FILE_VERSION_FILTER)

See also

WARN_LINE_FORMAT

The default value is: $file:$1line: Stext.

WARN_LINE_FORMAT
In the $text part of the WARN_FORMAT command it is possible that a reference to a more specific place
is given. To make it easier to jump to this place (outside of Doxygen) the user can define a custom "cut" /
"paste” string.

Example:

WARN_LINE_FORMAT = "’'vi $file +$line’"

See also

WARN_FORMAT

The default value is: at 1ine $line of file S$file.

WARN_LOGFILE
The WARN_LOGFILE tag can be used to specify a file to which warning and error messages should be
written. If left blank the output is written to standard error (stderr). In case the file specified cannot be
opened for writing the warning and error messages are written to standard error. When as file - is specified
the warning and error messages are written to standard output (st dout).

24.5 Configuration options related to the input files

INPUT
The INPUT tag is used to specify the files and/or directories that contain documented source files. You
may enter file names like myfile. cpp or directories like /usr/src/myproject. Separate the files or
directories with spaces. See also FILE_PATTERNS and EXTENSION_MAPPING

Generated by Doxygen 1.13.1

24.5 Configuration options related to the input files 137

Note

If this tag is empty the current directory is searched.

INPUT_ ENCODING
This tag can be used to specify the character encoding of the source files that Doxygen parses. Internally
Doxygen uses the UTF-8 encoding. Doxygen uses libiconv (or the iconv built into 1ibc) for the
transcoding. See the libiconv documentation forthe list of possible encodings.

See also

INPUT_FILE_ENCODING

The default value is: UTF-38.

INPUT_FILE_ENCODING
This tag can be used to specify the character encoding of the source files that Doxygen parses. The
INPUT_FILE_ENCODING tag can be used to specify character encoding on a per file pattern basis.
Doxygen will compare the file name with each pattern and apply the encoding instead of the default
INPUT_ENCODING if there is a match. The character encodings are a list of the form: pattern=encoding
(like *.php=1S0-8859-1).

See also

INPUT_ENCODING for further information on supported encodings.

FILE PATTERNS
If the value of the INPUT tag contains directories, you can use the FILE_PATTERNS tag to specify one or
more wildcard patterns (like . cpp and *. h) to filter out the source-files in the directories.

Note that for custom extensions or not directly supported extensions you also need to set EXTENSION_MAPPING

for the extension otherwise the files are not read by Doxygen.

Note the list of default checked file patterns might differ from the list of default file extension mappings.

If left blank the following patterns are tested: *x.c, x.cc, *.cxx, *.CxXxXm, *.Cpp, *.Cppm, *.CCn,
*.CH+, k. ct+m, *. java, x. 11, x.1ixx, *.1pp, *.1i++, *.1inl, x.1d1, *x.ddl, *.0dl, *.h, *.hh,
*.hxx, *.hpp, *.h++, x.1ixx, *.1, *x.cs, *.d, *.php, *.php4, *x.php5, *x.phtml, *.inc, *.m,
*.markdown, *.md, *.mm, *x.dox (to be provided as Doxygen C comment), *.py, *.pyw, *.£90,
x,.£95,%.f03,%.£f08,*.£18,*.f,*.for, *x.vhd, x.vhdl, *x.ucf, *x.gsf and x.1ice

RECURSIVE
The RECURSIVE tag can be used to specify whether or not subdirectories should be searched for input files
as well.

The default value is: NO.

EXCLUDE
The EXCLUDE tag can be used to specify files and/or directories that should be excluded from the INPUT
source files. This way you can easily exclude a subdirectory from a directory tree whose root is specified with
the INPUT tag.
Note that relative paths are relative to the directory from which Doxygen is run.

EXCLUDE_SYMLINKS
The EXCLUDE_SYMLINKS tag can be used to select whether or not files or directories that are symbolic
links (a Unix file system feature) are excluded from the input.

The default value is: NO.

EXCLUDE_PATTERNS
If the value of the INPUT tag contains directories, you can use the EXCLUDE_PATTERNS tag to specify
one or more wildcard patterns to exclude certain files from those directories.
Note that the wildcards are matched against the file with absolute path, so to exclude all test directories for
example use the pattern x/test /*

Generated by Doxygen 1.13.1

https://www.gnu.org/software/libiconv/

138 Configuration

EXCLUDE_SYMBOLS
The EXCLUDE_SYMBOLS tag can be used to specify one or more symbol names (namespaces, classes,
functions, etc.) that should be excluded from the output. The symbol name can be a fully qualified name,
a word, or if the wildcard * is used, a substring. Examples: ANamespace, AClass, ANamespace: : «
AClass, ANamespace: :¥Test

EXAMPLE_PATH
The EXAMPLE_PATH tag can be used to specify one or more files or directories that contain example code
fragments that are included (see the \include command).

EXAMPLE_PATTERNS
If the value of the EXAMPLE_PATH tag contains directories, you can use the EXAMPLE_PATTERNS tag to
specify one or more wildcard pattern (like x. cpp and x.h) to filter out the source-files in the directories. If
left blank all files are included.

EXAMPLE_ RECURSIVE
If the EXAMPLE_RECURSIVE tag is set to YES then subdirectories will be searched for input files to be
used with the \include or \dontinclude commands irrespective of the value of the RECURSIVE tag.

The default value is: NO.

IMAGE_PATH
The IMAGE_PATH tag can be used to specify one or more files or directories that contain images that are
to be included in the documentation (see the \image command).

INPUT_FILTER
The INPUT_FILTER tag can be used to specify a program that Doxygen should invoke to filter for each
input file. Doxygen will invoke the filter program by executing (via popen ()) the command:
<filter> <input-file>
where <filter> isthe value of the INPUT_FILTER tag, and <input-file> is the name of an input
file. Doxygen will then use the output that the filter program writes to standard output. If FILTER_PATTERNS
is specified, this tag will be ignored.
Note that the filter must not add or remove lines; it is applied before the code is scanned, but not when the
output code is generated. If lines are added or removed, the anchors will not be placed correctly.
Note that Doxygen will use the data processed and written to standard output for further processing, there-
fore nothing else, like debug statements or used commands (so in case of a Windows batch file always use
@echo OFF), should be written to standard output.
Note that for custom extensions or not directly supported extensions you also need to set EXTENSION_MAPPING
for the extension otherwise the files are not properly processed by Doxygen.

FILTER PATTERNS

The FILTER_PATTERNS tag can be used to specify filters on a per file pattern basis. Doxygen will
compare the file name with each pattern and apply the filter if there is a match. The filters are a list of the
form: pattern=filter (like *.cpp=my_cpp_filter). See INPUT_FILTER for further information on how
filters are used. If the FILTER_PATTERNS tag is empty or if none of the patterns match the file name,
INPUT_FILTER is applied.

Note that for custom extensions or not directly supported extensions you also need to set EXTENSION_MAPPING
for the extension otherwise the files are not properly processed by Doxygen.

FILTER SOURCE_FILES
If the FILTER_SOURCE_FILES tag is set to YES, the input filter (if set using INPUT_FILTER) will
also be used to filter the input files that are used for producing the source files to browse (i.e. when
SOURCE_BROWSER is set to YES).

The default value is: NO.

FILTER_SOURCE_PATTERNS
The FILTER_SOURCE_PATTERNS tag can be used to specify source filters per file pattern. A pattern
will override the setting for FILTER_PATTERN (if any) and it is also possible to disable source filtering for a
specific pattern using * . ext = (so without naming a filter).

This tag requires that the tag FILTER_SOURCE_FILES is set to YES.

Generated by Doxygen 1.13.1

24.6 Configuration options related to source browsing 139

USE_MDFILE_AS_MAINPAGE
If the USE_MDFILE_AS_MAINPAGE tag refers to the name of a markdown file that is part of the input, its
contents will be placed on the main page (index.html). This can be useful if you have a project on for
instance GitHub and want to reuse the introduction page also for the Doxygen output.

IMPLICIT DIR_DOCS
If the IMPLICIT_DIR_DOCS tag is set to YES, any README .md file found in sub-directories of the
project's root, is used as the documentation for that sub-directory, except when the README . md starts with
a \dir, \page or \mainpage command. If set to NO, the README . md file needs to start with an explicit \dir
command in order to be used as directory documentation.

The default value is: YES.

FORTRAN_COMMENT_AFTER
The Fortran standard specifies that for fixed formatted Fortran code all characters from position 72 are to be
considered as comment. A common extension is to allow longer lines before the automatic comment starts.
The setting FORTRAN_COMMENT_AFTER will also make it possible that longer lines can be processed
before the automatic comment starts.

Minimum value: 7, maximum value: 10000, default value: 72.

24.6 Configuration options related to source browsing

SOURCE_BROWSER
If the SOURCE_BROWSER tag is setto YES then a list of source files will be generated. Documented entities
will be cross-referenced with these sources.
Note: To get rid of all source code in the generated output, make sure that also VERBATIM_HEADERS is set
to NO.

The default value is: NO.
INLINE_SOURCES

Setting the INLINE_SOURCES tag to YES will include the body of functions, multi-line macros, enums or
list initialized variables directly into the documentation.

The default value is: NO.
STRIP_CODE_COMMENTS

Setting the STRIP_CODE_COMMENTS tag to YES will instruct Doxygen to hide any special comment blocks
from generated source code fragments. Normal C, C++ and Fortran comments will always remain visible.

The default value is: YES.
REFERENCED BY RELATION

If the REFERENCED_BY_RELATION tag is set to YES then for each documented entity all documented
functions referencing it will be listed.

The default value is: NO.
REFERENCES RELATION

If the REFERENCES_RELATION tag is set to YES then for each documented function all documented
entities called/used by that function will be listed.

The default value is: NO.
REFERENCES_ LINK_ SOURCE
If the REFERENCES_LINK_SOURCE tag is set to YES and SOURCE_BROWSER tag is set to YES then

the hyperlinks from functions in REFERENCES_RELATION and REFERENCED_BY_RELATION lists will link
to the source code. Otherwise they will link to the documentation.

The default value is: YES.

SOURCE_TOOLTIPS
If SOURCE_TOOLTIPS is enabled (the default) then hovering a hyperlink in the source code will show a

Generated by Doxygen 1.13.1

140 Configuration

tooltip with additional information such as prototype, brief description and links to the definition and documen-
tation. Since this will make the HTML file larger and loading of large files a bit slower, you can opt to disable
this feature.

The default value is: YES.
This tag requires that the tag SOURCE_BROWSER is set to YES.
USE_HTAGS
If the USE_HTAGS tag is set to YES then the references to source code will point to the HTML generated
by the htags (1) tool instead of Doxygen built-in source browser. The htags tool is part of GNU's global
source tagging system (see https://www.gnu.org/software/global/global.html). You
will need version 4.8.6 or higher.
To use it do the following:
1. Install the latest version of global
Enable SOURCE_BROWSER and USE_HTAGS in the configuration file

Make sure the INPUT points to the root of the source tree

L

Run doxygen as normal

Doxygen will invoke htags (and that will in turn invoke gt ags), so these tools must be available from
the command line (i.e. in the search path).

The result: instead of the source browser generated by Doxygen, the links to source code will now point
to the output of htags.

The default value is: NO.
This tag requires that the tag SOURCE_BROWSER is set to YES.
VERBATIM_ HEADERS

If the VERBATIM_HEADERS tag is set the YES then Doxygen will generate a verbatim copy of the header
file for each class for which an include is specified. Set to NO to disable this.

See also

Section \class.

The default value is: YES.

CLANG_ASSISTED_PARSING
If the CLANG_ASSISTED_PARSING tag is set to YES then Doxygen will use the clang parser for
more accurate parsing at the cost of reduced performance. This can be particularly helpful with template rich
C++ code for which Doxygen's built-in parser lacks the necessary type information.

Note

The availability of this option depends on whether or not Doxygen was generated with the -Duse_+
1libclang=ON option for CMake.

The default value is: NO.

CLANG_ADD_INC_PATHS
If the CLANG_ASSISTED_PARSING tag is setto YES and the CLANG_ADD_INC_PATHS tag is set to
YES then Doxygen will add the directory of each input to the include path.

The default value is: YES.
This tag requires that the tag CLANG_ASSISTED_PARSING is set to YES.
CLANG_OPTIONS
If clang assisted parsing is enabled you can provide the compiler with command line options that you would

normally use when invoking the compiler. Note that the include paths will already be set by Doxygen for the
files and directories specified with INPUT and INCLUDE_PATH.

This tag requires that the tag CLANG_ASSISTED_PARSING is set to YES.

Generated by Doxygen 1.13.1

https://www.gnu.org/software/global/global.html
http://clang.llvm.org/

24.7 Configuration options related to the alphabetical class index 141

CLANG_DATABASE_PATH
If clang assisted parsing is enabled you can provide the clang parser with the path to the directory containing
a file called compile_commands. json. This file is the compilation database containing the
options used when the source files were built. This is equivalent to specifying the —p option to a clang
tool, such as clang—-check. These options will then be passed to the parser. Any options specified with
CLANG_OPTIONS will be added as well.

Note

The availability of this option depends on whether or not Doxygen was generated with the —Duse_«
1libclang=0N option for CMake.

24.7 Configuration options related to the alphabetical class index

ALPHABETICAL_ INDEX
Ifthe ALPHABETICAL_INDEX tagis setto YES, an alphabetical index of all compounds will be generated.
Enable this if the project contains a lot of classes, structs, unions or interfaces.

The default value is: YES.

IGNORE_PREFIX
The IGNORE_PREF IX tag can be used to specify a prefix (or a list of prefixes) that should be ignored while
generating the index headers. The IGNORE_PREF IX tag works for classes, function and member names.
The entity will be placed in the alphabetical list under the first letter of the entity name that remains after
removing the prefix.

This tag requires that the tag ALPHABETICAL_INDEX is set to YES.

24.8 Configuration options related to the HTML output

GENERATE_HTML
If the GENERATE_HTML tag is set to YES, Doxygen will generate HTML output

The default value is: YES.

HTML_OUTPUT
The HTML_OUTPUT tag is used to specify where the HTML docs will be put. If a relative path is entered the
value of OUTPUT_DIRECTORY will be put in front of it.

The default directory is: html.
This tag requires that the tag GENERATE_HTML is set to YES.

HTML_FILE_EXTENSION
The HTML_FILE_EXTENSION tag can be used to specify the file extension for each generated HTML
page (for example: .htm, .php, .asp).
The default value is: . html.

This tag requires that the tag GENERATE_HTML is set to YES.

HTML_HEADER
The HTML_HEADER tag can be used to specify a user-defined HTML header file for each generated HTML
page. If the tag is left blank Doxygen will generate a standard header.
To get valid HTML the header file that includes any scripts and style sheets that Doxygen needs, which is
dependent on the configuration options used (e.g. the setting GENERATE_TREEVIEW). It is highly recom-
mended to start with a default header using

doxygen -w html new_header.html new_footer.html new_stylesheet.css YourConfigFile

and then modify the file new_header.html.

See also section Doxygen usage for information on how to generate the default header that Doxygen normally
uses.

Generated by Doxygen 1.13.1

http://clang.llvm.org/docs/HowToSetupToolingForLLVM.html

142

Configuration

Note

The header is subject to change so you typically have to regenerate the default header when upgrading
to a newer version of Doxygen. The following markers have a special meaning inside the header and
footer:

Stitle
will be replaced with the title of the page.

$datetime
will be replaced with the current date and time.

$date
will be replaced with the current date.

Stime
will be replaced with the current time.

Syear
will be replaces with the current year.

$showdate (<format>)
will be replaced with the current date and time according to the format as specified by <format>.
The <format > follows the rules as specified for the \showdate command with the exception that
no) is allowed in the <format>.

$doxygenversion
will be replaced with the version of Doxygen

$projectname
will be replaced with the name of the project (see PROJECT_NAME)

$projectnumber
will be replaced with the project number (see PROJECT_NUMBER)

$projectbrief
will be replaced with the project brief description (see PROJECT_BRIEF)

$projectlogo
will be replaced with the project logo (see PROJECT_LOGO)

$generatedby
will be replaced with the output language dependent version of the text "Generated by" or when
the TIMESTAMP is set by the output language dependent version of the text "Generated on
Sdatetime for Sprojectname by".

$stylesheet
will be replaced with the setting of HTML_STYLESHEET unless it is empty or the file in which case
it is replaced by the default setting doxygen.css.

Sextrastylesheet
will be replaced with the setting of HTML_EXTRA_STYLESHEET including the required HTML
tags for each extra stylesheet.

Streeview
will be replaced with links to the JavaScript and style sheets needed for the navigation tree (or an
empty string when GENERATE_TREEVIEW is disabled).

$search
will be replaced with a links to the JavaScript and style sheets needed for the search engine (or an
empty string when SEARCHENGINE is disabled).

$searchbox
will be replaced with the HTML code needed for the search box to be shown (or an empty string
when SEARCHENGINE is disabled).

$mathjax
will be replaced with a links to the JavaScript and style sheets needed for the MathJax feature (or
an empty string when USE_MATHJAX is disabled).

$relpath”
If CREATE_SUBDIRS is enabled, the command $relpath” can be used to produce a relative
path to the root of the HTML output directory, e.g. use $relpath”doxygen.css, to refer to
the standard style sheet.

$navpath
will be replaced with a path as required by GENERATE_TREEVIEW

Generated by Doxygen 1.13.1

24.8 Configuration options related to the HTML output 143

To cope with differences in the layout of the header and footer that depend on configuration settings, the
header can also contain special blocks that will be copied to the output or skipped depending on the configu-
ration. Such blocks have the following form:

<!--BEGIN BLOCKNAME-->

Some context copied when condition BLOCKNAME holds

<!--END BLOCKNAME-->

<!--BEGIN !BLOCKNAME-->

Some context copied when condition BLOCKNAME does not hold
<!-—END !BLOCKNAME-->

The following block names are supported:

DISABLE_INDEX
Content within this block is copied to the output if the DISABLE_INDEX option is enabled (so when the
index is disabled).

GENERATE_TREEVIEW
Content within this block is copied to the output if the GENERATE_TREEVIEW option is enabled.

SEARCHENGINE
Content within this block is copied to the output if the SEARCHENGINE option is enabled.

PROJECT_NAME
Content within the block is copied to the output if the PROJECT_NAME option is not empty.

PROJECT_NUMBER
Content within the block is copied to the output if the PROJECT_NUMBER option is not empty.

PROJECT_BRIEF
Content within the block is copied to the output if the PROJECT_BRIEF option is not empty.

PROJECT_LOGO
Content within the block is copied to the output if the PROJECT_LOGO option is not empty.

FULL SIDEBAR
Content within the block is copied to the output if the FULL_SIDEBAR, DISABLE_INDEX and
GENERATE_TREEVIEW options are all enabled.

TITLEAREA
Content within this block is copied to the output if a title is visible at the top of each page. This is the case
if either PROJECT_NAME, PROJECT_BRIEF, PROJECT_LOGO is filled in or if both DISABLE_INDEX
and SEARCHENGINE are enabled.

This tag requires that the tag GENERATE_HTML is set to YES.

HTML_FOOTER
The HTML_FOOTER tag can be used to specify a user-defined HTML footer for each generated HTML page.
If the tag is left blank Doxygen will generate a standard footer.

See HTML_HEADER for more information on how to generate a default footer and what special commands
can be used inside the footer.

See also section Doxygen usage for information on how to generate the default footer that Doxygen normally
uses.

This tag requires that the tag GENERATE_HTML is set to YES.

HTML_STYLESHEET
The HTML_STYLESHEET tag can be used to specify a user-defined cascading style sheet that is used by
each HTML page. It can be used to fine-tune the look of the HTML output. If left blank Doxygen will generate
a default style sheet.

See also section Doxygen usage for information on how to generate the style sheet that Doxygen normally
uses.

Generated by Doxygen 1.13.1

144

Configuration

Note

It is recommended to use HTML_EXTRA_STYLESHEET instead of this tag, as it is more robust and

this tag (HTML_STYLESHEET) will in the future become obsolete.

This tag requires that the tag GENERATE_HTML is set to YES.

HTML_EXTRA_STYLESHEET

The HTML_EXTRA_STYLESHEET tag can be used to specify additional user-defined cascading style
sheets that are included after the standard style sheets created by Doxygen. Using this option one can
overrule certain style aspects. This is preferred over using HTML_STYLESHEET since it does not replace
the standard style sheet and is therefore more robust against future updates. Doxygen will copy the style

sheet files to the output directory.

Note

The order of the extra style sheet files is of importance (e.g. the last style sheet in the list overrules the

setting of the previous ones in the list).

Since the styling of scrollbars can currently not be overruled in Webkit/Chromium, the styling will be
left out of the default doxygen.css if one or more extra stylesheets have been specified. So if scrollbar
customization is desired it has to be added explicitly. Here is an example style sheet that gives the

contents area a fixed width:

body {

background-color:

color: black;
margin: 0;

}

div.contents {
margin-bottom:
padding: 12px;

margin-left: auto;

margin-right:
width: 960px;

background-color:

border-radius:

}

#titlearea {

background-color:

}
hr.footer {
display: none;

}

.footer {

background-color:

}

This tag requires that the tag GENERATE_HTML is set to YES.

HTML_EXTRA_FILES

The HTML_EXTRA_FILES tag can be used to specify one or more extra images or other source files which
should be copied to the HTML output directory. Note that these files will be copied to the base HTML output
directory. Use the Srelpath” marker in the HTML_HEADER and/or HTML_FOOTER files to load these
files. In the HTML_STYLESHEET file, use the file name only. Also note that the files will be copied as-is;

there are no commands or markers available.
This tag requires that the tag GENERATE_HTML is set to YES.

HTML_COLORSTYLE

The HTML_COLORSTYLE tag can be used to specify if the generated HTML output should be rendered with

a dark or light theme.

Possible values are: LIGHT always generates light mode output, DARK always generates dark mode output,
AUTO_LIGHT automatically sets the mode according to the user preference, uses light mode if no preference

Generated by Doxygen 1.13.1

24.8 Configuration options related to the HTML output 145

is set (the default), AUTO_DARK automatically sets the mode according to the user preference, uses dark
mode if no preference is set and TOGGLE allows a user to switch between light and dark mode via a button.

The default value is: AUTO_LIGHT.
This tag requires that the tag GENERATE_HTML is set to YES.

HTML_COLORSTYLE_HUE
The HTML_COLORSTYLE_HUE tag controls the color of the HTML output. Doxygen will adjust the colors
in the style sheet and background images according to this color. Hue is specified as an angle on a color-
wheel, see https://en.wikipedia.org/wiki/Hue for more information. For instance the value
0 represents red, 60 is yellow, 120 is green, 180 is cyan, 240 is blue, 300 purple, and 360 is red again.

Minimum value: 0, maximum value: 359, default value: 220.
This tag requires that the tag GENERATE_HTML is set to YES.

HTMIL_COLORSTYLE_SAT
The HTML_COLORSTYLE_ SAT tag controls the purity (or saturation) of the colors in the HTML output. For
a value of 0 the output will use gray-scales only. A value of 255 will produce the most vivid colors.

Minimum value: 0, maximum value: 255, default value: 100.
This tag requires that the tag GENERATE_HTML is set to YES.

HTMIL_COLORSTYLE_GAMMA
The HTML_COLORSTYLE_GAMMA tag controls the gamma correction applied to the luminance component
of the colors in the HTML output. Values below 100 gradually make the output lighter, whereas values above
100 make the output darker. The value divided by 100 is the actual gamma applied, so 80 represents a
gamma of 0.8, The value 220 represents a gamma of 2.2, and 100 does not change the gamma.

Minimum value: 40, maximum value: 240, default value: 80.
This tag requires that the tag GENERATE_HTML is set to YES.
HTML_DYNAMIC_ MENUS
If the HTML_DYNAMIC_MENUS tag is set to YES then the generated HTML documentation will contain
a main index with vertical navigation menus that are dynamically created via JavaScript. If disabled, the

navigation index will consists of multiple levels of tabs that are statically embedded in every HTML page.
Disable this option to support browsers that do not have JavaScript, like the Qt help browser.

The default value is: YES.
This tag requires that the tag GENERATE_HTML is set to YES.
HTML_DYNAMIC_SECTIONS

If the HTML_DYNAMIC_SECTIONS tag is setto YES then the generated HTML documentation will contain
sections that can be hidden and shown after the page has loaded.

The default value is: NO.
This tag requires that the tag GENERATE_HTML is set to YES.
HTML_CODE_FOLDING

If the HTML_CODE_FOLDING tag is set to YES then classes and functions can be dynamically folded and
expanded in the generated HTML source code.

The default value is: YES.
This tag requires that the tag GENERATE_HTML is set to YES.
HTML_COPY_CLIPBOARD
If the HTML_COPY_CLIPBOARD tag is set to YES then Doxygen will show an icon in the top right corner
of code and text fragments that allows the user to copy its content to the clipboard. Note this only works if

supported by the browser and the web page is served via a secure context, i.e. using the https: or
file: protocol.

The default value is: YES.
This tag requires that the tag GENERATE_HTML is set to YES.

Generated by Doxygen 1.13.1

https://en.wikipedia.org/wiki/Hue
https://www.w3.org/TR/secure-contexts/

146 Configuration

HTML_PROJECT_COOKIE
Doxygen stores a couple of settings persistently in the browser (via e.g. cookies). By default these settings
apply to all HTML pages generated by Doxygen across all projects. The HTML_PROJECT_COOKIE tag
can be used to store the settings under a project specific key, such that the user preferences will be stored
separately.

This tag requires that the tag GENERATE_HTML is set to YES.

HTML_INDEX NUM ENTRIES

With HTML_ INDEX_NUM_ENTRIES one can control the preferred number of entries shown in the various
tree structured indices initially; the user can expand and collapse entries dynamically later on. Doxygen will
expand the tree to such a level that at most the specified number of entries are visible (unless a fully collapsed
tree already exceeds this amount). So setting the number of entries 1 will produce a full collapsed tree by
default. 0 is a special value representing an infinite number of entries and will result in a full expanded tree
by default.

Minimum value: 0, maximum value: 9999, default value: 100.

This tag requires that the tag GENERATE_HTML is set to YES.

GENERATE_DOCSET
If the GENERATE_DOCSET tag is set to YES, additional index files will be generated that can
be used as input for Apple's Xcode 3 integrated development environment, in-
troduced with OSX 10.5 (Leopard). To create a documentation set, Doxygen will generate a
Makefile in the HTML output directory. Running make will produce the docset in that directory
and running make install will install the docset in ~/Library/Developer/Shared/«
Documentation/DocSets so that Xcode will find it at startup. See https://developer.«
apple.com/library/archive/featuredarticles/DoxygenXcode/_index.html for
more information.
The default value is: NO.

This tag requires that the tag GENERATE_HTML is set to YES.

DOCSET_ FEEDNAME
This tag determines the name of the docset feed. A documentation feed provides an umbrella under which
multiple documentation sets from a single provider (such as a company or product suite) can be grouped.

The default value is: Doxygen generated docs.
This tag requires that the tag GENERATE_DOCSET is set to YES.

DOCSET_FEEDURL
This tag determines the URL of the docset feed. A documentation feed provides an umbrella under which
multiple documentation sets from a single provider (such as a company or product suite) can be grouped.

This tag requires that the tag GENERATE_DOCSET is set to YES.

DOCSET BUNDLE_ID
This tag specifies a string that should uniquely identify the documentation set bundle. This should be a
reverse domain-name style string, e.g. com.mycompany .MyDocSet. Doxygen will append .docset to
the name.
The default value is: org.doxygen.Project.

This tag requires that the tag GENERATE_DOCSET is set to YES.
DOCSET_PUBLISHER_ ID
The DOCSET_PUBLISHER_ID tag specifies a string that should uniquely identify the documentation

publisher. This should be a reverse domain-name style string, e.g. com.mycompany.MyDocSet .«
documentation.

The default value is: org.doxygen.Publisher.

This tag requires that the tag GENERATE_DOCSET is set to YES.
DOCSET_PUBLISHER NAME

The DOCSET_PUBLISHER_NAME tag identifies the documentation publisher.

The default value is: Publisher.

This tag requires that the tag GENERATE_DOCSET is set to YES.

Generated by Doxygen 1.13.1

https://developer.apple.com/xcode/
https://developer.apple.com/library/archive/featuredarticles/DoxygenXcode/_index.html
https://developer.apple.com/library/archive/featuredarticles/DoxygenXcode/_index.html

24.8 Configuration options related to the HTML output 147

GENERATE_HTMLHELP

If the GENERATE_HTMLHELP tag is set to YES then Doxygen generates three additional HTML index
files: index.hhp, index.hhc, and index.hhk. The index.hhp is a project file that can be read by
Microsoft's HTML Help Workshop on Windows. In the beginning of 2021 Microsoft took the original page, with
a.o. the download links, offline (the HTML help workshop was already many years in maintenance mode).
You can download the HTML help workshop from the web archives at Installation executable.
The HTML Help Workshop contains a compiler that can convert all HTML output generated by Doxygen into
a single compiled HTML file (. chm). Compiled HTML files are now used as the Windows 98 help format,
and will replace the old Windows help format (. h1p) on all Windows platforms in the future. Compressed
HTML files also contain an index, a table of contents, and you can search for words in the documentation.
The HTML workshop also contains a viewer for compressed HTML files.

The default value is: NO.
This tag requires that the tag GENERATE_HTML is set to YES.

CHM_FILE
The CHM_FILE tag can be used to specify the file name of the resulting . chm file. You can add a path in
front of the file if the result should not be written to the html output directory.

This tag requires that the tag GENERATE_HTMLHELP is set to YES.

HHC_LOCATION
The HHC_LOCAT ION tag can be used to specify the location (absolute path including file name) of the HTML
help compiler (hhc.exe). If non-empty, Doxygen will try to run the HTML help compiler on the generated
index.hhp.

The file has to be specified with full path.
This tag requires that the tag GENERATE_HTMLHELP is set to YES.

GENERATE_CHI
The GENERATE_CHT flag controls if a separate .chi index file is generated (YES) or that it should be
included in the main . chm file (NO).

The default value is: NO.
This tag requires that the tag GENERATE_HTMLHELP is set to YES.

CHM_INDEX_ENCODING
The CHM_INDEX_ENCODING is used to encode HimlHelp index (hhk), content (hhc) and project file
content.

This tag requires that the tag GENERATE_HTMLHELP is set to YES.

BINARY_TOC
The BINARY_TOC flag controls whether a binary table of contents is generated (YES) or a normal table of
contents (NO) in the . chm file. Furthermore it enables the Previous and Next buttons.

The default value is: NO.
This tag requires that the tag GENERATE_HTMLHELP is set to YES.

TOC_EXPAND
The TOC_EXPAND flag can be set to YES to add extra items for group members to the table of contents of
the HTML help documentation and to the tree view.

The default value is: NO.
This tag requires that the tag GENERATE_HTMLHELP is set to YES.

SITEMAP_URL
The SITEMAP_URL tag is used to specify the full URL of the place where the generated documentation will
be placed on the server by the user during the deployment of the documentation. The generated sitemap is
called sitemap.xml and placed on the directory specified by HTML_OUTPUT. In case no SITEMAP«
_URL is specified no sitemap is generated. For information about the sitemap protocol see https«
://www.sitemaps.org

This tag requires that the tag GENERATE_HTML is set to YES.

Generated by Doxygen 1.13.1

http://web.archive.org/web/20160201063255/http://download.microsoft.com/download/0/A/9/0A939EF6-E31C-430F-A3DF-DFAE7960D564/htmlhelp.exe
https://www.sitemaps.org
https://www.sitemaps.org

148 Configuration

GENERATE_QHP
If the GENERATE_QHP tag is set to YES and both QHP_NAMESPACE and QHP_VIRTUAL_FOLDER are
set, an additional index file will be generated that can be used as input for Qt's ghelpgenerator to generate a
Qt Compressed Help (. gch) of the generated HTML documentation.
The default value is: NO.

This tag requires that the tag GENERATE_HTML is set to YES.

QOCH_FILE
If the QHG_LOCATION tag is specified, the QCH_FILE tag can be used to specify the file name of the
resulting . gch file. The path specified is relative to the HTML output folder.

This tag requires that the tag GENERATE_QHP is set to YES.

QHP_NAMESPACE
The QHP_NAMESPACE tag specifies the namespace to use when generating Qt Help Project output. For
more information please see Ot Help Project / Namespace.

The default value is: org.doxygen.Project.
This tag requires that the tag GENERATE_QHP is set to YES.

QHP_VIRTUAL_FOLDER
The QHP_VIRTUAL_FOLDER tag specifies the namespace to use when generating Qt Help Project output.
For more information please see Qt Help Project / Virtual Folders.
The default value is: doc.

This tag requires that the tag GENERATE_QHP is set to YES.

QHP_CUST_FILTER NAME
If the QHP_CUST_FILTER_NAME tag is set, it specifies the name of a custom filter to add. For more
information please see Ot Help Project / Custom Filters.

This tag requires that the tag GENERATE_QHP is set to YES.

QHP_CUST_FILTER_ATTRS
The QHP_CUST_FILTER_ATTRS tag specifies the list of the attributes of the custom filter to add. For
more information please see Ot Help Project / Custom Filters.

This tag requires that the tag GENERATE_QHP is set to YES.

QHP_SECT_ FILTER_ATTRS
The QHP_SECT_FILTER_ATTRS tag specifies the list of the attributes this project's filter section matches.
Qt Help Project / Filter Attributes.

This tag requires that the tag GENERATE_QHP is set to YES.
QHG_LOCATION

The QHG_LOCATION tag can be used to specify the location (absolute path including file name) of Qt's
ghelpgenerator. If non-empty Doxygen will try to run ghelpgenerator on the generated . ghp file.

This tag requires that the tag GENERATE_QHP is set to YES.
GENERATE_ECLIPSEHELP

If the GENERATE_ECLIPSEHELP tag is set to YES, additional index files will be generated, together with
the HTML files, they form an Ec1ipse help plugin.

To install this plugin and make it available under the help contents menu in Ec1ipse, the contents of the
directory containing the HTML and XML files needs to be copied into the plugins directory of eclipse. The
name of the directory within the plugins directory should be the same as the ECLIPSE_DOC_ID value.

After copying Eclipse needs to be restarted before the help appears.
The default value is: NO.
This tag requires that the tag GENERATE_HTML is set to YES.

Generated by Doxygen 1.13.1

https://doc.qt.io/archives/qt-4.8/qthelpproject.html#namespace
https://doc.qt.io/archives/qt-4.8/qthelpproject.html#virtual-folders
https://doc.qt.io/archives/qt-4.8/qthelpproject.html#custom-filters
https://doc.qt.io/archives/qt-4.8/qthelpproject.html#custom-filters
https://doc.qt.io/archives/qt-4.8/qthelpproject.html#filter-attributes

24.8 Configuration options related to the HTML output 149

ECLIPSE_DOC_ID
A unique identifier for the Ec1ipse help plugin. When installing the plugin the directory name containing
the HTML and XML files should also have this name. Each documentation set should have its own identifier.

The default value is: org.doxygen.Project.
This tag requires that the tag GENERATE_ECLIPSEHELP is set to YES.

DISABLE_INDEX
If you want full control over the layout of the generated HTML pages it might be necessary to disable the
index and replace it with your own. The DISABLE_INDEX tag can be used to turn on/off the condensed
index (tabs) at top of each HTML page. A value of NO enables the index and the value YES disables it. Since
the tabs in the index contain the same information as the navigation tree, you can set this option to YES if you
also set GENERATE_TREEVIEW to YES.

The default value is: YES.
This tag requires that the tag GENERATE_HTML is set to YES.

GENERATE_TREEVIEW
The GENERATE_TREEVIEW tag is used to specify whether a tree-like index structure should be generated
to display hierarchical information. If the tag value is set to YES, a side panel will be generated containing a
tree-like index structure (just like the one that is generated for HTML Help). For this to work a browser that
supports JavaScript, DHTML, CSS and frames is required (i.e. any modern browser). Windows users are
probably better off using the HTML help feature.

Via custom style sheets (see HTML_EXTRA_STYLESHEET) one can further fine tune the look of the index
(see Fine-tuning the output). As an example, the default style sheet generated by Doxygen has an example
that shows how to put an image at the root of the tree instead of the PROJECT_NAME.

Since the tree basically has the same information as the tab index, you could consider setting
DISABLE_INDEX to YES when enabling this option.

The default value is: YES.
This tag requires that the tag GENERATE_HTML is set to YES.

FULL_SIDEBAR
When both GENERATE_TREEVIEW and DISABLE_INDEX are set to YES, then the FULL_SIDEBAR op-
tion determines if the side bar is limited to only the treeview area (value NO) or if it should extend to the
full height of the window (value YES). Setting this to YES gives a layout similar to https://docs.«
readthedocs. io with more room for contents, but less room for the project logo, title, and description.
If either GENERATE_TREEVIEW or DISABLE_INDEX is set to NO, this option has no effect.
The default value is: NO.

This tag requires that the tag GENERATE_HTML is set to YES.
ENUM_VALUES_PER_LINE
The ENUM_VALUES_PER_LINE tag can be used to set the number of enum values that Doxygen will

group on one line in the generated HTML documentation.
Note that a value of 0 will completely suppress the enum values from appearing in the overview section.

Minimum value: 0, maximum value: 20, default value: 4.
This tag requires that the tag GENERATE_HTML is set to YES.
SHOW_ENUM_VALUES

When the SHOW_ENUM_VALUES tag is set doxygen will show the specified enumeration values besides
the enumeration mnemonics.

The default value is: NO.
TREEVIEW WIDTH

If the treeview is enabled (see GENERATE_TREEVIEW) then this tag can be used to set the initial width (in
pixels) of the frame in which the tree is shown.

Minimum value: 0, maximum value: 1500, default value: 250.
This tag requires that the tag GENERATE_HTML is set to YES.

Generated by Doxygen 1.13.1

https://docs.readthedocs.io
https://docs.readthedocs.io

150 Configuration

EXT LINKS_IN_WINDOW
Ifthe EXT_LINKS_IN_WINDOW option is setto YES, Doxygen will open links to external symbols imported
via tag files in a separate window.

The default value is: NO.
This tag requires that the tag GENERATE_HTML is set to YES.

OBFUSCATE_EMAILS
If the OBFUSCATE_EMATILS tag is set to YES, Doxygen will obfuscate email addresses.

The default value is: YES.
This tag requires that the tag GENERATE_HTML is set to YES.

HTML_FORMULA_FORMAT
If the HTML_FORMULA_FORMAT option is set to svg, Doxygen will use the pdf2svg tool (see https«
://github.com/dawbarton/pdf2svg) orinkscape (see https://inkscape.org) to gener-
ate formulas as SVG images instead of PNGs for the HTML output. These images will generally look nicer at
scaled resolutions.

Possible values are: png (the default) and svg (looks nicer but requires the pdf2svg or inkscape tool).
The default value is: png.
This tag requires that the tag GENERATE_HTML is set to YES.

FORMULA_FONTSIZE
Use this tag to change the font size of IATEX formulas included as images in the HTML documentation. When
you change the font size after a successful Doxygen run you need to manually remove any form_x.png
images from the HTML output directory to force them to be regenerated.

Minimum value: 8, maximum value: 50, default value: 10.
This tag requires that the tag GENERATE_HTML is set to YES.

FORMULA_ MACROFILE
The FORMULA_MACROFILE can contain KTEX \newcommand and \renewcommand commands to
create new IATEX commands to be used in formulas as building blocks. See the section Including formulas for
details.

USE_MATHJAX
Enable the USE_MATHJAX option to render IKTEX formulas using MathJax (see https://www.«
mathjax.org) which uses client side JavaScript for the rendering instead of using pre-rendered bitmaps.
Use this if you do not have IATEX installed or if you want to formulas look prettier in the HTML output.
When enabled you may also need to install MathJax separately and configure the path to it using the
MATHJAX_RELPATH option.

The default value is: NO.
This tag requires that the tag GENERATE_HTML is set to YES.

MATHJAX VERSION
With MATHJAX_VERSION it is possible to specify the Mathdax version to be used. Note that the different
versions of Mathdax have different requirements with regards to the different settings, so it is possible that
also other MathJax settings have to be changed when switching between the different MathJax versions.

Possible values are: MathJax_2 and MathJax_ 3.

The default value is: MathJax_2.

This tag requires that the tag USE_MATHJAX is set to YES.
MATHJAX FORMAT

When MathJax is enabled you can set the default output format to be used for the MathJax output. For more
details about the output format see MathJax version 2 and MathJax version 3.

Possible values are: HTML~-CSS (which is slower, but has the best compatibility. This is the name for Math-
jax version 2, for Mathdax version 3 this will be translated into chtml), NativeMML (i.e. MathML. Only
supported for MathJax 2. For Mathdax version 3 chtml will be used instead.), chtml (This is the name for
Mathjax version 3, for MathJax version 2 this will be translated into H-TML-CSS) and SVG.

Generated by Doxygen 1.13.1

https://github.com/dawbarton/pdf2svg
https://github.com/dawbarton/pdf2svg
https://inkscape.org
https://www.mathjax.org
https://www.mathjax.org
http://docs.mathjax.org/en/v2.7-latest/output.html
http://docs.mathjax.org/en/latest/web/components/output.html

24.8 Configuration options related to the HTML output 151

The default value is: HTML-CSS.
This tag requires that the tag USE_MATHJAX is set to YES.

MATHJAX RELPATH
When MathJax is enabled you need to specify the location relative to the HTML output directory using
the MATHJAX_RELPATH option. The destination directory should contain the MathJax . js script. For in-
stance, if the math jax directory is located at the same level as the HTML output directory, then MATHJIAX «
_RELPATH should be . . /mathjax. The default value points to the MathJax Content Delivery Network so
you can quickly see the result without installing MathJax. However, it is strongly recommended to install a
local copy of MathJax from https://www.mathjax.org before deployment.

The default value is:

* in case of Mathdax version 2: https://cdn.jsdelivr.net/npm/mathjax@2
» in case of Mathdax version 3: https://cdn.jsdelivr.net/npm/mathjax@3

This tag requires that the tag USE_MATHJAX is set to YES.

MATHJAX EXTENSIONS
The MATHJAX_EXTENSIONS tag can be used to specify one or more MathJax extension names that
should be enabled during MathJax rendering. For example for MathJax version 2 (see https://docs.«
mathjax.org/en/v2.7-latest/tex.html#ftex—-and-latex—-extensions):

MATHJAX_EXTENSIONS = TeX/AMSmath TeX/AMSsymbols

For example for MathJax version 3 (see http://docs.mathjax.org/en/latest/input/tex/extensions/ir
html):

MATHJAX_EXTENSIONS = ams

This tag requires that the tag USE_MATHJAX is set to YES.

MATHJAX CODEFILE
The MATHJAX_CODEFILE tag can be used to specify a file with JavaScript pieces of code that will be used
on startup of the MathJax code. See the MathJax site for more details. As an example to disable
the "Math Renderer" menu item in the "Math Settings" menu of MathJax:

MATHJAX_CODEFILE = disableRenderer.js

with in the file disableRenderer. js:

MathJax.Hub.Config ({
menuSettings: {
showRenderer: false,
}

1)

This tag requires that the tag USE_MATHJAX is set to YES.

SEARCHENGINE
When the SEARCHENGINE tag is enabled Doxygen will generate a search box for the HTML output.
The underlying search engine uses JavaScript and DHTML and should work on any modern browser.
Note that when using HTML help (GENERATE_HTMLHELP), Qt help (GENERATE_QHP), or docsets
(GENERATE_DOCSET) there is already a search function so this one should typically be disabled. For
large projects the JavaScript based search engine can be slow, then enabling SERVER_BASED_SEARCH
may provide a better solution.

It is possible to search using the keyboard; to jump to the search box use <access key> + S (whatthe
<access key> is depends on the OS and browser, but it is typically <CTRL>, <ALT>/<option>, or
both). Inside the search box use the <cursor down key> to jump into the search results window, the
results can be navigated using the <cursor keys>. Press <Enter> to select an item or <escape>
to cancel the search. The filter options can be selected when the cursor is inside the search box by pressing
<Shift>+<cursor down>. Also here use the <cursor keys> to select a filter and <Enter> or
<escape> to activate or cancel the filter option.

The default value is: YES.
This tag requires that the tag GENERATE_HTML is set to YES.

Generated by Doxygen 1.13.1

https://www.mathjax.org
https://cdn.jsdelivr.net/npm/mathjax@2
https://cdn.jsdelivr.net/npm/mathjax@3
https://docs.mathjax.org/en/v2.7-latest/tex.html#tex-and-latex-extensions
https://docs.mathjax.org/en/v2.7-latest/tex.html#tex-and-latex-extensions
http://docs.mathjax.org/en/latest/input/tex/extensions/index.html
http://docs.mathjax.org/en/latest/input/tex/extensions/index.html
http://docs.mathjax.org/en/v2.7-latest/output.html

152 Configuration

SERVER_BASED_SEARCH
When the SERVER_BASED_SEARCH tag is enabled the search engine will be implemented using a web
server instead of a web client using JavaScript.

There are two flavors of web server based searching depending on the EXTERNAL_SEARCH setting. When
disabled, Doxygen will generate a PHP script for searching and an index file used by the script. When
EXTERNAL_SEARCH is enabled the indexing and searching needs to be provided by external tools. See the
section External Indexing and Searching for details.

The default value is: NO.
This tag requires that the tag SEARCHENGINE is set to YES.

EXTERNAL_SEARCH
When EXTERNAL_SEARCH tag is enabled Doxygen will no longer generate the PHP script for searching.
Instead the search results are written to an XML file which needs to be processed by an external indexer.
Doxygen will invoke an external search engine pointed to by the SEARCHENGINE_URL option to obtain the
search results.
Doxygen ships with an example indexer (doxyindexer) and search engine (doxysearch.cgi) which
are based on the open source search engine library Xapian.
See the section External Indexing and Searching for details.

The default value is: NO.
This tag requires that the tag SEARCHENGINE is set to YES.

SEARCHENGINE_URL
The SEARCHENGINE_URL should point to a search engine hosted by a web server which will return the
search results when EXTERNAL_SEARCH is enabled.
Doxygen ships with an example indexer (doxyindexer) and search engine (doxysearch.:«
cgi) which are based on the open source search engine library Xapian. See the section
External Indexing and Searching for details.

This tag requires that the tag SEARCHENGINE is set to YES.

SEARCHDATA_FILE
When SERVER_BASED_SEARCH and EXTERNAL_SEARCH are both enabled the unindexed search data
is written to a file for indexing by an external tool. With the SEARCHDATA_FILE tag the name of this file
can be specified.

The default file is: searchdata.xml.
This tag requires that the tag SEARCHENGINE is set to YES.

EXTERNAIL_ SEARCH_ID
When SERVER_BASED SEARCH and EXTERNAL_SEARCH are both enabled the EXTERNAL_ «
SEARCH_ID tag can be used as an identifier for the project. This is useful in combination with
EXTRA_SEARCH_MAPPINGS to search through multiple projects and redirect the results back to the
right project.

This tag requires that the tag SEARCHENGINE is set to YES.

EXTRA_SEARCH_MAPPINGS
The EXTRA_SEARCH_MAPPINGS tag can be used to enable searching through Doxygen projects other
than the one defined by this configuration file, but that are all added to the same external search index. Each

project needs to have a unique id set via EXTERNAL_SEARCH_ID. The search mapping then maps the id
of to a relative location where the documentation can be found.

The format is:

EXTRA_SEARCH_MAPPINGS = tagnamel=locl tagname2=loc2 ...

This tag requires that the tag SEARCHENGINE is set to YES.

Generated by Doxygen 1.13.1

https://xapian.org/
https://xapian.org/

24.9 Configuration options related to the LaTeX output 153

24.9 Configuration options related to the LaTeX output

GENERATE_LATEX
If the GENERATE_LATEX tag is set to YES, Doxygen will generate ITEX output.

The default value is: YES.

LATEX_OUTPUT
The LATEX_OUTPUT tag is used to specify where the IATEX docs will be put. If a relative path is entered the

value of OUTPUT_DIRECTORY will be put in front of it.
The default directory is: 1atex.
This tag requires that the tag GENERATE_LATEX is set to YES.
LATEX_CMD_NAME
The LATEX_CMD_NAME tag can be used to specify the IATEX command name to be invoked.
Note that when not enabling USE_PDFLATEX the default is 1atex when enabling USE_PDFLATEX the

default is pdflatex and when in the later case 1atex is chosen this is overwritten by pdflatex. For
specific output languages the default can have been set differently, this depends on the implementation of the

output language.
This tag requires that the tag GENERATE_LATEX is set to YES.

MAKEINDEX_CMD_NAME
The MAKEINDEX_CMD_NAME tag can be used to specify the command name to generate index for IATEX.

Note
This tag is used in the Makefile /make.bat.

See also

LATEX_MAKEINDEX_CMD for the part in the generated output file (. tex).

The default file is: makeindex.
This tag requires that the tag GENERATE_LATEX is set to YES.

LATEX_MAKEINDEX_CMD
The LATEX_MAKEINDEX_CMD tag can be used to specify the command name to generate index for IATEX.

In case there is no backslash (\) as first character it will be automatically added in the IATEX code.
Note

This tag is used in the generated output file (. tex).

See also

MAKEINDEX_CMD_NAME for the part in the Makefile /make.bat.

The default value is: makeindex.
This tag requires that the tag GENERATE_LATEX is set to YES.

COMPACT_LATEX
If the COMPACT_LATEX tag is set to YES, Doxygen generates more compact IATEX documents. This may

be useful for small projects and may help to save some trees in general.
The default value is: NO.
This tag requires that the tag GENERATE_LATEX is set to YES.

PAPER_TYPE
The PAPER_TYPE tag can be used to set the paper type that is used by the printer.

Possible values are: a4 (210 x 297 mm), letter (8.5 x 11 inches), 1legal (8.5 x 14 inches) and
executive (7.25 x 10.5 inches).

The default value is: a4.

This tag requires that the tag GENERATE_LATEX is set to YES.

Generated by Doxygen 1.13.1

154 Configuration

EXTRA_ PACKAGES
The EXTRA_PACKAGES tag can be used to specify one or more IATgX package names that should be
included in the IATEX output. The package can be specified just by its name or with the correct syntax as to
be used with the IATEX \usepackage command.

To get the t imes font for instance you can specify :

EXTRA_PACKAGES=times
or
EXTRA_PACKAGES={times}

To use the option int1imits with the amsmath package you can specify:

EXTRA_PACKAGES=[intlimits] {amsmath}

If left blank no extra packages will be included.
This tag requires that the tag GENERATE_LATEX is set to YES.

LATEX HEADER
The LATEX_HEADER tag can be used to specify a user-defined IATEX header for the generated IATEX docu-
ment. The header should contain everything until the first chapter. If it is left blank Doxygen will generate a
standard header.

It is highly recommended to start with a default header using

doxygen -w latex new_header.tex new_footer.tex new_stylesheet.sty

and then modify the file new_header.tex.

See also section Doxygen usage for information on how to generate the default header that Doxygen normally
uses.

Note: Only use a user-defined header if you know what you are doing!
Note

The header is subject to change so you typically have to regenerate the default header when upgrading
to a newer version of Doxygen. The following commands have a special meaning inside the header
(and footer):

Stitle
will be replaced with the project name.
$datetime
will be replaced with the current date and time.
$date
will be replaced with the current date.
Stime
will be replaced with the current time.
Syear
will be replaces with the current year.
$showdate (<format>)
will be replaced with the current date and time according to the format as specified by <format>.
The <format > follows the rules as specified for the \showdate command with the exception that
no) is allowed in the <format>.
$doxygenversion
will be replaced with the version of Doxygen
$projectname
will be replaced with the name of the project (see PROJECT_NAME)
$projectnumber
will be replaced with the project number (see PROJECT_NUMBER)
$projectbrief
will be replaced with the project brief description (see PROJECT_BRIEF)

Generated by Doxygen 1.13.1

24.9 Configuration options related to the LaTeX output 155

$projectlogo
will be replaced with the project logo (see PROJECT_LOGO)

$latexdocumentpre
will be replaced by an output language dependent setting e.g. embed the entire docu-
ment in a special environment (for Chinese, Japanese etc.) Commonly used together with
Slatexdocumentpost in the footer.

$latexdocumentpost
will be replaced by an output language dependent setting e.g. embed the entire docu-
ment in a special environment (for Chinese, Japanese etc.) Commonly used together with
S$latexdocumentpre in the header.

$generatedby
will be replaced with the output language dependent version of the text "Generated by" or when
the TIMESTAMP is set by the output language dependent version of the text "Generated on
Sdatetime for Sprojectname by"

$latexcitereference
will be replaced by the output language dependent$ version of the word "Bibliography". This setting
is typically used in combination with the block name CITATIONS_PRESENT.

$latexbibstyle
will be replaced with the latex bib style to be used as set by LATEX_BIB_STYLE, in case nothing is
set the bib style plain is used. This setting is typically used in combination with the block name
CITATIONS_PRESENT.

$latexbibfiles
will be replaced by the comma separated list of bib. files as set by CITE_BIB_FILES (when
necessary a missing .bib is automatically added). This setting is typically used in combination
with the block name CITATIONS_PRESENT.

$Spapertype
will be replaced by the paper type as set in PAPER_TYPE and the word "paper" is directly ap-
pended to it to have a correct IATEX paper type.

$1langIso
will be replaced by the ISO language name.

$languagesupport
will be replaced by an output language dependent setting of packages required for translating terms
of the specified language.

$latexfontenc
will be replaced by an output language dependent setting of the fontencoding to be used. This
setting is typically used in combination with the block name LATEX_FONTENC.

$latexfont
will be replaced by an output language dependent setting of the fonts to be used.

$latexemojidirectory
will be replaced by the directory as set in LATEX_EMOJI_DIRECTORY with the backslashes re-
placed by forward slashes (so usable by IATEX). In case the LATEX_EMOJI_DIRECTORY is empty,
the current directory will be used.

$makeindex
will be replaced by the command as setin LATEX_MAKEINDEX_CMD. Then the command doesn't
start with a backslash, a backslash is automatically prepended. In case the setting is empty the
command \makeindex is used.

$extralatexpackages
will be replaced by commands for using the packages set in EXTRA_PACKAGES.

$extralatexstylesheet
will be replaced by commands for using the packages set in LATEX_EXTRA_STYLESHEET (when
the extension is the default extension, . sty, this extension is stripped for the package name).

$latexspecialformulachars
will be replaced by the code for some special unicode characters that are commonly used (i.e.
superscript minus, superscript 2 and superscript 3)

$formulamacrofile
will be replaced by the name of the file as set in FORMULA_MACROFILE. This setting is typically
used in combination with the block name FORMULA_MACROFILE.

Generated by Doxygen 1.13.1

156

Configuration

To cope with differences in the layout of the header and footer that depend on configuration settings, the
header and footer can also contain special blocks that will be copied to the output or skipped depending on
the configuration. Such blocks have the following form:

%$%$BEGIN BLOCKNAME

Some context copied when condition BLOCKNAME holds

%$%END BLOCKNAME

$$BEGIN !BLOCKNAME

Some context copied when condition BLOCKNAME does not hold
$%$END !BLOCKNAME

The following block names are set based on the used settings in the configuration file:

COMPACT_LATEX
Content within this block is copied to the output when the COMPACT_LATEX option is enabled.

PDF_HYPERLINKS
Content within this block is copied to the output when the PDF_HYPERLINKS option is enabled.

USE_PDFLATEX
Content within this block is copied to the output when the USE_PDFLATEX option is enabled.

LATEX BATCHMODE
Content within this block is copied to the output when the LATEX_BATCHMODE option is enabled.

TIMESTAMP
Content within this block is copied to the output when the TIMESTAMP option is enabled.

The following block names are set based on the fact whether or not the tag has a value in the used configu-
ration file:

LATEX_ FONTENC
Content within this block is copied to the output when the Doxygen latex translator function returns
a value for the font encoding to be used. It is to be used in combination with the above mentioned
Slatexfontenc.

FORMULA_MACROFILE
Content within this block is copied to the output when the FORMULA_MACROFILE option is not empty.
It is to be used in combination with the above mentioned $formulamacrofile.

The following block name is set based on whether or not a feature is used in the documentation:

CITATIONS_PRESENT
Content within this block is copied to the output when in the documentation citations are present
and the relevant .. are present. It is to be used in combination with the above mentioned
Slatexcitereference, $latexbibstyle and $latexbibfiles.

This tag requires that the tag GENERATE_LATEX is set to YES.

LATEX_FOOTER

The LATEX_FOOTER tag can be used to specify a user-defined IATEX footer for the generated ITEX docu-
ment. The footer should contain everything after the last chapter. If it is left blank Doxygen will generate a
standard footer.

See LATEX_HEADER for more information on how to generate a default footer and what special commands
can be used inside the footer.

See also section Doxygen usage for information on how to generate the default footer that Doxygen normally
uses.

Note: Only use a user-defined footer if you know what you are doing!
This tag requires that the tag GENERATE_LATEX is set to YES.

LATEX EXTRA STYLESHEET

The LATEX_EXTRA_STYLESHEET tag can be used to specify additional user-defined IATEX style sheets
that are included after the standard style sheets created by Doxygen. Using this option one can overrule
certain style aspects. Doxygen will copy the style sheet files to the output directory.

Generated by Doxygen 1.13.1

24.9 Configuration options related to the LaTeX output 157

Note

The order of the extra style sheet files is of importance (e.g. the last style sheet in the list overrules the
setting of the previous ones in the list).

This tag requires that the tag GENERATE_LATEX is set to YES.

LATEX_EXTRA FILES
The LATEX_EXTRA_FILES tag can be used to specify one or more extra images or other source files
which should be copied to the LATEX_OUTPUT output directory. Note that the files will be copied as-is; there
are no commands or markers available.

This tag requires that the tag GENERATE_LATEX is set to YES.

PDF_HYPERLINKS
If the PDF_HYPERLINKS tag is set to YES, the IATEX that is generated is prepared for conversion to PDF
(using ps2pdf or pdflatex). The PDF file will contain links (just like the HTML output) instead of page
references. This makes the output suitable for online browsing using a PDF viewer.

The default value is: YES.
This tag requires that the tag GENERATE_LATEX is set to YES.

USE_PDFLATEX
Ifthe USE_PDFLATEX tag is setto YES, Doxygen will use the engine as specified with LATEX_CMD_NAME
to generate the PDF file directly from the IATEX files. Set this option to YES, to get a higher quality PDF
documentation.
See also section LATEX_CMD_NAME for selecting the engine.

The default value is: YES.
This tag requires that the tag GENERATE_LATEX is set to YES.

LATEX_ BATCHMODE
The LATEX_BATCHMODE tag signals the behavior of IATEX in case of an error.

Possible values are: NO same as ERROR_STOP, YES same as BATCH, BATCH In batch mode nothing is
printed on the terminal, errors are scrolled as if <return> is hit at every error; missing files that TeX tries
to input or request from keyboard input (\read on a not open input stream) cause the job to abort, NON_ «
STOP In nonstop mode the diagnostic message will appear on the terminal, but there is no possibility of user
interaction just like in batch mode, SCROLL In scroll mode, TeX will stop only for missing files to input or if
keyboard input is necessary and ERROR_STOP In errorstop mode, TeX will stop at each error, asking for
user intervention.

The default value is: NO.
This tag requires that the tag GENERATE_LATEX is set to YES.
LATEX_ HIDE_INDICES

If the LATEX_HIDE_INDICES tag is setto YES then Doxygen will not include the index chapters (such as
File Index, Compound Index, etc.) in the output.

The default value is: NO.
This tag requires that the tag GENERATE_LATEX is set to YES.
LATEX_ BIB STYLE

The LATEX_BIB_STYLE tag can be used to specify the style to use for the bibliography, e.g. plainnat,
or ieeetr. See https://en.wikipedia.org/wiki/BibTeX and \cite for more info.

The default value is: plainnat.
This tag requires that the tag GENERATE_LATEX is set to YES.
LATEX_ EMOJI_DIRECTORY
The LATEX_EMOJI_DIRECTORY tag is used to specify the (relative or absolute) path from which the

emoji images will be read. If a relative path is entered, it will be relative to the LATEX_OUTPUT directory. If
left blank the LATEX_OUTPUT directory will be used.

This tag requires that the tag GENERATE_LATEX is set to YES.

Generated by Doxygen 1.13.1

https://en.wikipedia.org/wiki/BibTeX

158 Configuration

24.10 Configuration options related to the RTF output

GENERATE_RTF
If the GENERATE_RTF tag is set to YES, Doxygen will generate RTF output. The RTF output is optimized
for Word 97 and may not look too pretty with other RTF readers/editors.

The default value is: NO.

RTF_OUTPUT
The RTF_OUTPUT tag is used to specify where the RTF docs will be put. If a relative path is entered the
value of OUTPUT_DIRECTORY will be put in front of it.

The default directory is: rt £.
This tag requires that the tag GENERATE_RTF is set to YES.

COMPACT_RTF
If the COMPACT_RTF tag is set to YES, Doxygen generates more compact RTF documents. This may be
useful for small projects and may help to save some trees in general.
The default value is: NO.

This tag requires that the tag GENERATE_RTF is set to YES.

RTF_HYPERLINKS
Ifthe RTF_HYPERLINKS tag is set to YES, the RTF that is generated will contain hyperlink fields. The RTF
file will contain links (just like the HTML output) instead of page references. This makes the output suitable
for online browsing using Word or some other Word compatible readers that support those fields.

Note: WordPad (write) and others do not support links.
The default value is: NO.
This tag requires that the tag GENERATE_RTF is set to YES.

RTF_STYLESHEET_FILE
Load stylesheet definitions from file. Syntax is similar to Doxygen's configuration file, i.e. a series of assign-
ments. You only have to provide replacements, missing definitions are set to their default value.
See also section Doxygen usage for information on how to generate the default style sheet that Doxygen
normally uses.

This tag requires that the tag GENERATE_RTF is set to YES.
RTF_EXTENSIONS_FILE

Set optional variables used in the generation of an RTF document. Syntax is similar to Doxygen's configura-
tion file. A template extensions file can be generated using doxygen -e rtf extensionFile.

This tag requires that the tag GENERATE_RTF is set to YES.
RTF_EXTRA FILES
The RTF_EXTRA_FILES tag can be used to specify one or more extra images or other source files which

should be copied to the RTF_OUTPUT output directory. Note that the files will be copied as-is; there are no
commands or markers available.

This tag requires that the tag GENERATE_RTF is set to YES.

24.11 Configuration options related to the man page output

GENERATE_MAN
If the GENERATE_MAN tag is set to YES, Doxygen will generate man pages for classes and files.

The default value is: NO.

Generated by Doxygen 1.13.1

24.12 Configuration options related to the XML output 159

MAN_OUTPUT
The MAN_OUTPUT tag is used to specify where the man pages will be put. If a relative path is entered the
value of OUTPUT_DIRECTORY will be put in front of it. A directory man3 will be created inside the directory
specified by MAN_OUTPUT.

The default directory is: man.
This tag requires that the tag GENERATE_MAN is set to YES.

MAN_ EXTENSION
The MAN_EXTENSION tag determines the extension that is added to the generated man pages. In case
the manual section does not start with a number, the number 3 is prepended. The dot (.) at the beginning of
the MAN_EXTENSION tag is optional.

The default value is: . 3.
This tag requires that the tag GENERATE_MAN is set to YES.
MAN_SUBDIR

The MAN_SUBDIR tag determines the name of the directory created within MAN_OUTPUT in which the man
pages are placed. If defaults to man followed by MAN_EXTENSION with the initial . removed.

This tag requires that the tag GENERATE_MAN is set to YES.
MAN_LINKS
If the MAN_LINKS tag is set to YES and Doxygen generates man output, then it will generate one additional

man file for each entity documented in the real man page(s). These additional files only source the real man
page, but without them the man command would be unable to find the correct page.

The default value is: NO.
This tag requires that the tag GENERATE_MAN is set to YES.

24.12 Configuration options related to the XML output

GENERATE_XML
If the GENERATE_ XML tag is set to YES, Doxygen will generate an XML file that captures the structure of
the code including all documentation.

The default value is: NO.
XML_OUTPUT

The XML_OUTPUT tag is used to specify where the XML pages will be put. If a relative path is entered the
value of OUTPUT_DIRECTORY will be put in front of it.

The default directory is: xm1.
This tag requires that the tag GENERATE_XML is set to YES.
XML_PROGRAMLISTING
If the XML__PROGRAMLISTING tag is set to YES, Doxygen will dump the program listings (including syntax

highlighting and cross-referencing information) to the XML output. Note that enabling this will significantly
increase the size of the XML output.

The default value is: YES.
This tag requires that the tag GENERATE_XML is set to YES.
XML_NS_MEMB_FILE_SCOPE

If the XML_NS_MEMB_FILE_SCOPE tag is set to YES, Doxygen will include namespace members in file
scope as well, matching the HTML output.

The default value is: NO.
This tag requires that the tag GENERATE_XML is set to YES.

Generated by Doxygen 1.13.1

160 Configuration

24.13 Configuration options related to the DOCBOOK output

GENERATE_DOCBOOK
If the GENERATE_DOCBOOK tag is set to YES, Doxygen will generate Docbook files that can be used to
generate PDF.

The default value is: NO.
DOCBOOK_OUTPUT

The DOCBOOK_OUTPUT tag is used to specify where the Docbook pages will be put. If a relative path is
entered the value of OUTPUT_DIRECTORY will be put in front of it.

The default directory is: docbook.
This tag requires that the tag GENERATE_DOCBOOK is set to YES.

24.14 Configuration options for the AutoGen Definitions output

GENERATE_AUTOGEN_DEF
If the GENERATE_AUTOGEN_DEF tag is set to YES, Doxygen will generate an AutoGen Definitions (see
https://autogen.sourceforge.net/) file that captures the structure of the code including all
documentation. Note that this feature is still experimental and incomplete at the moment.

The default value is: NO.

24.15 Configuration options related to Sqlite3 output

GENERATE_SQLITE3
If the GENERATE_SQLITE3 tag is set to YES Doxygen will generate a Sqlite3 database with symbols
found by Doxygen stored in tables.

The default value is: NO.
SQLITE3_OUTPUT

The SQLITE3_OUTPUT tag is used to specify where the Sglite3 database will be put. If a relative path
is entered the value of OUTPUT_DIRECTORY will be put in front of it.

The default directory is: sglite3.
This tag requires that the tag GENERATE_SQLITES3 is set to YES.
SQLITE3_RECREATE_DB
The SQLITE3_RECREATE_DB tag is set to YES, the existing doxygen_sqlite3.db database file will be
recreated with each Doxygen run. If set to NO, Doxygen will warn if a database file is already found and not
modify it.
The default value is: YES.
This tag requires that the tag GENERATE_SQLITES is set to YES.

24.16 Configuration options related to the Perl module output

GENERATE_PERLMOD
If the GENERATE_PERLMOD tag is set to YES, Doxygen will generate a Perl module file that captures the
structure of the code including all documentation.
Note that this feature is still experimental and incomplete at the moment.

The default value is: NO.

Generated by Doxygen 1.13.1

https://autogen.sourceforge.net/

24.17 Configuration options related to the preprocessor 161

PERLMOD_LATEX
If the PERLMOD_LATEX tag is set to YES, Doxygen will generate the necessary Makefile rules, Perl
scripts and IATEX code to be able to generate PDF and DVI output from the Perl module output.

The default value is: NO.
This tag requires that the tag GENERATE_PERLMOD is set to YES.

PERLMOD_PRETTY
If the PERLMOD_PRETTY tag is set to YES, the Perl module output will be nicely formatted so it can be
parsed by a human reader. This is useful if you want to understand what is going on. On the other hand,
if this tag is set to NO, the size of the Perl module output will be much smaller and Perl will parse it just the
same.

The default value is: YES.
This tag requires that the tag GENERATE_PERLMOD is set to YES.
PERLMOD_MAKEVAR_PREFIX
The names of the make variables in the generated doxyrules.make file are prefixed with the string

contained in PERLMOD_MAKEVAR_PREFIX. This is useful so different doxyrules.make files included
by the same Makefile don't overwrite each other's variables.

This tag requires that the tag GENERATE_PERLMOD is set to YES.

24.17 Configuration options related to the preprocessor

ENABLE_PREPROCESSING
If the ENABLE_PREPROCESSING tag is set to YES, Doxygen will evaluate all C-preprocessor directives
found in the sources and include files.

The default value is: YES.
MACRO_EXPANSION
If the MACRO_EXPANSION tag is set to YES, Doxygen will expand all macro names in the source code. If

set to NO, only conditional compilation will be performed. Macro expansion can be done in a controlled way
by setting EXPAND_ONLY_PREDEF to YES.

The default value is: NO.
This tag requires that the tag ENABLE_PREPROCESSING is set to YES.
EXPAND_ ONLY_ PREDEF

If the EXPAND_ONLY_PREDEF and MACRO_EXPANSION tags are both set to YES then the macro ex-
pansion is limited to the macros specified with the PREDEFINED and EXPAND_AS_DEFINED tags.

The default value is: NO.
This tag requires that the tag ENABLE_PREPROCESSING is set to YES.
SEARCH_INCLUDES

If the SEARCH_INCLUDES tag is set to YES, the include files in the INCLUDE_PATH will be searched if a
#include is found.

The default value is: YES.
This tag requires that the tag ENABLE_PREPROCESSING is set to YES.
INCLUDE_PATH

The INCLUDE_PATH tag can be used to specify one or more directories that contain include files that are
not input files but should be processed by the preprocessor.

Note that the INCLUDE_PATH is not recursive, so the setting of RECURSIVE has no effect here.
This tag requires that the tag SEARCH_INCLUDES is set to YES.

Generated by Doxygen 1.13.1

162 Configuration

INCLUDE_FILE_ PATTERNS
You can use the INCLUDE_FILE_PATTERNS tag to specify one or more wildcard patterns (like *.h
and *x.hpp) to filter out the header-files in the directories. If left blank, the patterns specified with
FILE_PATTERNS will be used.

This tag requires that the tag ENABLE_PREPROCESSING is set to YES.

PREDEFINED
The PREDEFINED tag can be used to specify one or more macro names that are defined before the
preprocessor is started (similar to the —D option of e.g. gcc). The argument of the tag is a list of macros
of the form: name or name=definition (no spaces). If the definition and the "=" are omitted, "=1" is
assumed. To prevent a macro definition from being undefined via #unde £ or recursively expanded use the
: = operator instead of the = operator.

This tag requires that the tag ENABLE_PREPROCESSING is set to YES.

EXPAND_ AS_DEFINED
If the MACRO_EXPANSION and EXPAND_ONLY_PREDEF tags are set to YES then this tag can be used to
specify a list of macro names that should be expanded. The macro definition that is found in the sources will

be used. Use the PREDEFINED tag if you want to use a different macro definition that overrules the definition
found in the source code.

This tag requires that the tag ENABLE_PREPROCESSING is set to YES.
SKIP_ FUNCTION_MACROS
If the SKIP_FUNCTION_MACROS tag is setto YES then Doxygen's preprocessor will remove all references

to function-like macros that are alone on a line, have an all uppercase name, and do not end with a semicolon.
Such function macros are typically used for boiler-plate code, and will confuse the parser if not removed.

The default value is: YES.
This tag requires that the tag ENABLE_PREPROCESSING is set to YES.

24.18 Configuration options related to external references

TAGFILES
The TAGFILES tag can be used to specify one or more tag files.

For each tag file the location of the external documentation should be added. The format of a tag file without
this location is as follows:

TAGFILES = filel file2 ...

Adding location for the tag files is done as follows:

TAGFILES = filel=locl "file2 = loc2" ...

where Loc1 and 1oc2 can be relative or absolute paths or URLs. See the section Linking to external documentation
for more information about the use of tag files.

Note

Each tag file must have a unique name (where the name does NOT include the path). If a tag file is not
located in the directory in which Doxygen is run, you must also specify the path to the tagfile here.

GENERATE_TAGFILE
When a file name is specified after GENERATE_TAGFILE, Doxygen will create a tag file that is based on
the input files it reads. See section Linking to external documentation for more information about the usage
of tag files.

ALLEXTERNALS
Ifthe ALLEXTERNALS tag is set to YES, all external classes and namespaces will be listed in the class and
namespace index. If set to NO, only the inherited external classes will be listed.

The default value is: NO.

Generated by Doxygen 1.13.1

24.19 Configuration options related to diagram generator tools 163

EXTERNAL_GROUPS
If the EXTERNAL_GROUPS tag is set to YES, all external groups will be listed in the topic index. If set to
NO, only the current project's groups will be listed.

The default value is: YES.

EXTERNAL_PAGES
If the EXTERNAL_PAGES tag is set to YES, all external pages will be listed in the related pages index. If
set to NO, only the current project's pages will be listed.

The default value is: YES.

24.19 Configuration options related to diagram generator tools

HIDE UNDOC_RELATIONS
If set to YES the inheritance and collaboration graphs will hide inheritance and usage relations if the target
is undocumented or is not a class.

The default value is: YES.

HAVE_DOT
If you set the HAVE_DOT tag to YES then Doxygen will assume the dot tool is available from the path.
This tool is part of Graphviz, a graph visualization toolkit from AT&T and Lucent Bell Labs. The other
options in this section have no effect if this option is set to NO

The default value is: NO.

DOT_NUM_THREADS
The DOT_NUM_THREADS specifies the number of dot invocations Doxygen is allowed to run in parallel.
When set to 0 Doxygen will base this on the number of processors available in the system. You can set it
explicitly to a value larger than 0 to get control over the balance between CPU load and processing speed.

Minimum value: 0, maximum value: 32, default value: 0.
This tag requires that the tag HAVE_DOT is set to YES.

DOT_COMMON_ATTR
DOT_COMMON_ATTR is common attributes for nodes, edges and labels of subgraphs. When you want a
differently looking font in the dot files that Doxygen generates you can specify fontname, fontcolor and fontsize
attributes. For details please see Node, Edge and Graph Attributes specification You
need to make sure dot is able to find the font, which can be done by putting it in a standard location or by
setting the DOTFONTPATH environment variable or by setting DOT_FONTPATH to the directory containing
the font. Default graphviz fontsize is 14.

The default value is: fontname=Helvetica, fontsize=10.
This tag requires that the tag HAVE_DOT is set to YES.
DOT_EDGE_ATTR
DOT_EDGE_ATTR is concatenated with DOT_COMMON_ATTR. For elegant style you can add 'ar-

rowhead=open, arrowtail=open, arrowsize=0.5". Complete documentation about arrows
shapes.

The default value is: 1abelfontname=Helvetica, labelfontsize=10.
This tag requires that the tag HAVE_DOT is set to YES.
DOT_NODE_ATTR

DOT_NODE_ATTR is concatenated with DOT_COMMON_ATTR. For view without boxes around nodes set
'shape=plain' or 'shape=plaintext’ Shapes specification

The default value is: shape=box, height=0.2,width=0.4.
This tag requires that the tag HAVE_DOT is set to YES.

Generated by Doxygen 1.13.1

https://www.graphviz.org/
https://graphviz.org/doc/info/attrs.html
https://graphviz.org/doc/info/arrows.html
https://graphviz.org/doc/info/arrows.html
https://www.graphviz.org/doc/info/shapes.html

164 Configuration

DOT_FONTPATH
You can set the path where dot can find font specified with fontname in DOT_COMMON_ATTR and others
dot attributes.

This tag requires that the tag HAVE_DOT is set to YES.

CLASS_GRAPH

If the CLASS_GRAPH tag is set to YES or GRAPH or BUILTIN then Doxygen will generate a graph for
each documented class showing the direct and indirect inheritance relations. In case the CLASS_GRAPH
tag is setto YES or GRAPH and HAVE_DQOT is enabled as well, then dot will be used to draw the graph. In
case the CLASS_GRAPH tag is setto YES and HAVE_DQT is disabled or if the CLASS_GRAPH tag is set to
BUILTIN, then the built-in generator will be used. If the CLASS_GRAPH tag is set to TEXT the direct and
indirect inheritance relations will be shown as texts / links. Explicit enabling an inheritance graph or choosing
a different representation for an inheritance graph of a specific class, can be accomplished by means of the
command \inheritancegraph. Disabling an inheritance graph can be accomplished by means of the command
\hideinheritancegraph.

Possible values are: NO, YES, TEXT, GRAPH and BUILTIN.
The default value is: YES.

COLLABORATION_GRAPH
If the COLLABORATION_GRAPH tag is set to YES then Doxygen will generate a graph for each doc-
umented class showing the direct and indirect implementation dependencies (inheritance, containment,
and class references variables) of the class with other documented classes. Explicit enabling a collabo-
ration graph, when COLLABORATION_GRAPH is set to NO, can be accomplished by means of the com-
mand \collaborationgraph. Disabling a collaboration graph can be accomplished by means of the command
\hidecollaborationgraph.

The default value is: YES.
This tag requires that the tag HAVE_DOT is set to YES.

GROUP_GRAPHS
If the GROUP__GRAPHS tag is set to YES then Doxygen will generate a graph for groups, showing the direct
groups dependencies. Explicit enabling a group dependency graph, when GROUP__GRAPHS is set to NO, can
be accomplished by means of the command \groupgraph. Disabling a directory graph can be accomplished
by means of the command \hidegroupgraph.

See also the chapter Grouping in the manual.
The default value is: YES.
This tag requires that the tag HAVE_DOT is set to YES.

UML_LOOK
If the UML_LOOK tag is set to YES, Doxygen will generate inheritance and collaboration diagrams in a style
similar to the OMG's Unified Modeling Language.

The default value is: NO.
This tag requires that the tag HAVE_DOT is set to YES.

UML_LIMIT NUM_FIELDS
If the UML_LOOK tag is enabled, the fields and methods are shown inside the class node. If there are many
fields or methods and many nodes the graph may become too big to be useful. The UML_LIMIT_NUM_«
FIELDS threshold limits the number of items for each type to make the size more manageable. Set this to
0 for no limit. Note that the threshold may be exceeded by 50% before the limit is enforced. So when you
set the threshold to 10, up to 15 fields may appear, but if the number exceeds 15, the total amount of fields
shown is limited to 10.

Minimum value: 0, maximum value: 100, default value: 10.
This tag requires that the tag UML_LOOK is set to YES.
DOT_UML_DETAILS
If the DOT_UML_DETAILS tag is set to NO, Doxygen will show attributes and methods without types and

arguments in the UML graphs. If the DOT_UML_DETAILS tag is set to YES, Doxygen will add type and
arguments for attributes and methods in the UML graphs. If the DOT_UML_DETAILS tag is set to NONE,

Generated by Doxygen 1.13.1

24.19 Configuration options related to diagram generator tools 165

Doxygen will not generate fields with class member information in the UML graphs. The class diagrams will
look similar to the default class diagrams but using UML notation for the relationships.

Possible values are: NO, YES and NONE.
The default value is: NO.
This tag requires that the tag UML_LOOK is set to YES.

DOT_WRAP_THRESHOLD
The DOT_WRAP_THRESHOLD tag can be used to set the maximum number of characters to display on a
single line. If the actual line length exceeds this threshold significantly it will be wrapped across multiple lines.
Some heuristics are applied to avoid ugly line breaks.

Minimum value: 0, maximum value: 1000, default value: 17.
This tag requires that the tag HAVE_DOT is set to YES.

TEMPLATE_RELATIONS
If the TEMPLATE_RELATIONS tag is set to YES then the inheritance and collaboration graphs will show
the relations between templates and their instances.

The default value is: NO.
This tag requires that the tag HAVE_DOT is set to YES.

INCLUDE_GRAPH
If the INCLUDE_GRAPH, ENABLE_PREPROCESSING and SEARCH_INCLUDES tags are setto YES then
Doxygen will generate a graph for each documented file showing the direct and indirect include dependencies
of the file with other documented files. Explicit enabling an include graph, when INCLUDE_GRAPH is is set
to NO, can be accomplished by means of the command \includegraph. Disabling an include graph can be
accomplished by means of the command \hideincludegraph.

The default value is: YES.
This tag requires that the tag HAVE_DOT is set to YES.

INCLUDED_BY_ GRAPH
If the INCLUDED_BY_GRAPH, ENABLE_PREPROCESSING and SEARCH_INCLUDES tags are set to
YES then Doxygen will generate a graph for each documented file showing the direct and indirect include de-
pendencies of the file with other documented files. Explicit enabling an included by graph, when INCLUDED+
_BY_GRAPH is set to NO, can be accomplished by means of the command \includedbygraph. Disabling an
included by graph can be accomplished by means of the command \hideincludedbygraph.

The default value is: YES.
This tag requires that the tag HAVE_DOT is set to YES.

CALL_GRAPH
If the CALL_GRAPH tag is set to YES then Doxygen will generate a call dependency graph for every global
function or class method.
Note that enabling this option will significantly increase the time of a run. So in most cases it will be better to
enable call graphs for selected functions only using the \callgraph command. Disabling a call graph can be
accomplished by means of the command \hidecallgraph.

The default value is: NO.
This tag requires that the tag HAVE_DOT is set to YES.

CALLER_GRAPH
If the CALLER_GRAPH tag is set to YES then Doxygen will generate a caller dependency graph for every
global function or class method.
Note that enabling this option will significantly increase the time of a run. So in most cases it will be better
to enable caller graphs for selected functions only using the \callergraph command. Disabling a caller graph
can be accomplished by means of the command \hidecallergraph.

The default value is: NO.
This tag requires that the tag HAVE_DOT is set to YES.

Generated by Doxygen 1.13.1

166 Configuration

GRAPHICAL_ HIERARCHY
If the GRAPHICAL_HIERARCHY tag is set to YES then Doxygen will graphical hierarchy of all classes
instead of a textual one.

The default value is: YES.
This tag requires that the tag HAVE_DOT is set to YES.

DIRECTORY_GRAPH
If the DIRECTORY_GRAPH tag is set to YES then Doxygen will show the dependencies a directory has on
other directories in a graphical way. The dependency relations are determined by the #include relations
between the files in the directories. Explicit enabling a directory graph, when DIRECTORY_GRAPH is set
to NO, can be accomplished by means of the command \directorygraph. Disabling a directory graph can be
accomplished by means of the command \hidedirectorygraph.

The default value is: YES.
This tag requires that the tag HAVE_DOT is set to YES.
DIR GRAPH_MAX DEPTH

The DIR_GRAPH_MAX_DEPTH tag can be used to limit the maximum number of levels of child directories
generated in directory dependency graphs by dot.

Minimum value: 1, maximum value: 25, default value: 1.
This tag requires that the tag DIRECTORY_GRAPH is set to YES.

DOT_IMAGE_FORMAT
The DOT__IMAGE_FORMAT tag can be used to set the image format of the images generated by dot. For
an explanation of the image formats see the section output formats in the documentation of the dot tool (
Graphviz).

Note

If you choose svg you need to set HTML_FILE_EXTENSION to xhtml in order to make the SVG files
visible in IE 9+ (other browsers do not have this requirement).

Possible values are: png, jpg, gif, svg, png:gd, png:gd:gd, png:cairo, png:cairo:gd
png:cairo:cairo,png:cairo:gdiplus, png:gdiplus and png:gdiplus:gdiplus.

The default value is: png.

This tag requires that the tag HAVE_DOT is set to YES.

INTERACTIVE_SVG
If DOT_IMAGE_FORMAT is set to svg, then this option can be set to YES to enable generation of interactive
SVG images that allow zooming and panning.
Note that this requires a modern browser other than Internet Explorer. Tested and working are Firefox,
Chrome, Safari, and Opera.

Note

For IE 9+ you need to set HTML_FILE_EXTENSION to xhtm1 in order to make the SVG files visible.
Older versions of IE do not have SVG support.

The default value is: NO.
This tag requires that the tag HAVE_DOT is set to YES.

DOT_PATH
The DOT_PATH tag can be used to specify the path where the dot tool can be found. If left blank, it is
assumed the dot tool can be found in the path.

This tag requires that the tag HAVE_DOT is set to YES.
DOTFILE_DIRS

The DOTFILE_DIRS tag can be used to specify one or more directories that contain dot files that are
included in the documentation (see the \dotfile command).

This tag requires that the tag HAVE_DOT is set to YES.

Generated by Doxygen 1.13.1

https://www.graphviz.org/
https://www.graphviz.org/

24.19 Configuration options related to diagram generator tools 167

DIA PATH
You can include diagrams made with dia in Doxygen documentation. Doxygen will then run dia to produce
the diagram and insert it in the documentation. The DIA_PATH tag allows you to specify the directory where
the dia binary resides. If left empty dia is assumed to be found in the default search path.

DIAFILE_DIRS
The DIAFILE_DIRS tag can be used to specify one or more directories that contain dia files that are
included in the documentation (see the \diafile command).

PLANTUML_JAR_PATH
When using PlantUML, the PLANTUML_JAR_PATH tag should be used to specify the path where java can
find the plantuml . jar file or to the filename of jar file to be used. If left blank, it is assumed PlantUML
is not used or called during a preprocessing step. Doxygen will generate a warning when it encounters a
\startuml command in this case and will not generate output for the diagram.

PLANTUML_ CFG_FILE
When using PlantUML, the PLANTUML_CFG_FILE tag can be used to specify a configuration file for
PlantUML.

PLANTUML_INCLUDE_PATH
When using PlantUML, the specified paths are searched for files specified by the ! include statementin a
PlantUML block.

PLANTUMLFILE_DIRS
The PLANTUMLFILE_DIRS tag can be used to specify one or more directories that contain PlantUml files
that are included in the documentation (see the \plantumlfile command).

DOT_GRAPH_MAX NODES
The DOT_GRAPH_MAX_NODES tag can be used to set the maximum number of nodes that will be shown
in the graph. If the number of nodes in a graph becomes larger than this value, Doxygen will truncate the
graph, which is visualized by representing a node as a red box. Note that if the number of direct children of
the root node in a graph is already larger than DOT_GRAPH_MAX_NODES then the graph will not be shown
at all. Also note that the size of a graph can be further restricted by MAX_DOT_GRAPH_DEPTH.

Minimum value: 0, maximum value: 10000, default value: 50.
This tag requires that the tag HAVE_DOT is set to YES.

MAX DOT_ GRAPH_ DEPTH
The MAX_DOT_GRAPH_DEPTH tag can be used to set the maximum depth of the graphs generated by
dot. A depth value of 3 means that only nodes reachable from the root by following a path via at most 3
edges will be shown. Nodes that lay further from the root node will be omitted. Note that setting this option
to 1 or 2 may greatly reduce the computation time needed for large code bases. Also note that the size
of a graph can be further restricted by DOT_GRAPH_MAX_NODES. Using a depth of 0 means no depth
restriction.

Minimum value: 0, maximum value: 1000, default value: 0.
This tag requires that the tag HAVE_DOT is set to YES.
DOT_MULTI_TARGETS
Set the DOT_MULTI_TARGETS tag to YES to allow dot to generate multiple output files in one run (i.e.

multiple -0 and -T options on the command line). This makes dot run faster, but since only newer versions
of dot (>1.8.10) support this, this feature is disabled by default.

The default value is: NO.
This tag requires that the tag HAVE_DOT is set to YES.
GENERATE_LEGEND

If the GENERATE_LEGEND tag is set to YES Doxygen will generate a legend page explaining the meaning
of the various boxes and arrows in the dot generated graphs.

Generated by Doxygen 1.13.1

168 Configuration

Note

This tag requires that UML_LOOK isn't set, i.e. the Doxygen internal graphical representation for inher-
itance and collaboration diagrams is used.

The default value is: YES.
This tag requires that the tag HAVE_DOT is set to YES.

DOT_CLEANUP
If the DOT_CLEANUP tag is set to YES, Doxygen will remove the intermediate files that are used to generate
the various graphs.
Note: This setting is not only used for dot files but also for msc temporary files.

The default value is: YES.

MSCGEN_TOOL
You can define message sequence charts within Doxygen comments using the \msc command. |If the
MSCGEN_TOOL tag is left empty (the default), then Doxygen will use a built-in version of mscgen tool to
produce the charts. Alternatively, the MSCGEN_TOOL tag can also specify the name an external tool. For
instance, specifying prog as the value, Doxygen will call the tool as prog -T <outfile_format>

-0 <outputfile> <inputfile>. The external tool should support output file formats "png", "eps",
"svg", and "ismap".

MSCFILE_DIRS
The MSCFILE_DIRS tag can be used to specify one or more directories that contain msc files that are
included in the documentation (see the \mscfile command).

24.20 Examples

Suppose you have a simple project consisting of two files: a source file example.cc and a header file
example.h. Then a minimal configuration file is as simple as:

INPUT = example.cc example.h

Assuming the example makes use of Qt classes and perl is located in /usr/bin, a more realistic configuration
file would be:

PROJECT_NAME = Example

INPUT = example.cc example.h
WARNINGS = YES

TAGFILES = gt.tag

SEARCHENGINE = NO

To generate the documentation for the OQdbtTabular package | have used the following configuration file:

PROJECT_NAME = QdbtTabular
OUTPUT_DIRECTORY = html

WARNINGS = YES

INPUT = examples/examples.doc src
FILE_PATTERNS = %x.cc *.h

INCLUDE_PATH = examples

TAGFILES = gt.tag

SEARCHENGINE = YES

To regenerate the Qt-1.44 documentation from the sources, you could use the following configuration file:

PROJECT_NAME = Qt
OUTPUT_DIRECTORY = gt_docs
HIDE_UNDOC_MEMBERS = YES
HIDE_UNDOC_CLASSES = YES

ENABLE_PREPROCESSING = YES

Generated by Doxygen 1.13.1

https://sourceforge.net/projects/qdbttabular/

24.20 Examples 169

MACRO_EXPANSION = YES
EXPAND_ONLY_PREDEF = YES

SEARCH_INCLUDES = YES

FULL_PATH_NAMES = YES

STRIP_FROM_PATH = $(QTDIR)/

PREDEFINED = USE_TEMPLATECLASS Q_EXPORT= \

QArrayT:=QArray \
QListT:=QList \
QDictT:=QDict \
QQueueT:=QQueue \
QVectorT:=QVector \
QPtrDictT:=QPtrDict \
QIntDictT:=QIntDict \
QStackT:=QStack \
QDictIteratorT:=QDictIterator \
QListIteratorT:=QListIterator \
QCacheT:=QCache \
QCachelIteratorT:=QCachelterator \
QIntCacheT:=QIntCache \
QIntCachelteratorT:=QIntCachelterator \
QIntDictIteratorT:=QIntDictIterator \
QPtrDictIteratorT:=QPtrDictIterator
INPUT = $(QTDIR) /doc \
$(QTDIR) /src/widgets \
S (QTDIR) /src/kernel \
$(QTDIR) /src/dialogs \
$(QTDIR) /src/tools
FILE_PATTERNS = x.cpp *.h gx.doc
INCLUDE_PATH $ (QTDIR) /include
RECURSIVE = YES

For the Qt-2.1 sources | recommend to use the following settings:

PROJECT_NAME = Qt
PROJECT_NUMBER = 2.1
HIDE_UNDOC_MEMBERS = YES
HIDE_UNDOC_CLASSES = YES
SOURCE_BROWSER = YES

INPUT = $(QTDIR) /src
FILE_PATTERNS = x.cpp *.h gx.doc
RECURSIVE = YES
EXCLUDE_PATTERNS = xcodec.cpp moc_x x/compat/* */3rdparty/x
ALPHABETICAL_INDEX = YES
IGNORE_PREFIX = Q
ENABLE_PREPROCESSING = YES
MACRO_EXPANSION = YES

INCLUDE_PATH = $(QTDIR)/include
PREDEFINED = Q_PROPERTY (x)= \

Q_OVERRIDE (x)= \

Q_EXPORT= \

Q_ENUMS (x)= \
"QT_STATIC_CONST=static const " \

_WS_X11_ \
INCLUDE_MENUITEM_DEF
EXPAND_ONLY_PREDEF = YES
EXPAND_AS_DEFINED = Q_OBJECT_FAKE Q_OBJECT ACTIVATE_SIGNAL_WITH_PARAM \

Q_VARIANT_AS

Here Doxygen's preprocessor is used to substitute some macro names that are normally substituted by the C
preprocessor, but without doing full macro expansion.

Generated by Doxygen 1.13.1

170 Configuration

Generated by Doxygen 1.13.1

Chapter 25

Special Commands

25.1 Introduction

All commands in the documentation start with a backslash (\) or an at-sign (@). If you prefer you can replace all
commands starting with a backslash below by their counterparts that start with an at-sign.

Some commands have one or more arguments. Each argument has a certain range:

« If <sharp> braces are used the argument is a single word.

« If (round) braces are used the argument extends until the end of the line on which the command was found.

« If {curly} braces are used the argument extends until the next paragraph. Paragraphs are delimited by a blank
line or by a section indicator. Note that {curly} braces are also used for command options, here the braces
are mandatory and just 'normal’ characters. The starting curly brace has to directly follow the command, so

without whitespace.

If in addition to the above argument specifiers [square] brackets are used the argument is optional, unless they are
placed between quotes in that case they are a mandatory part of the command argument.

Here is an alphabetically sorted list of all commands with references to their documentation:

\a e 25.161
\addindex 25.126
\addtogroup

\anchor 25.127
Narg o oo e 25.162
\attention. L 25.79
\author 25.80
\authors 25.81
1 25.163
\brief 25.82
\bug . .o 25.83
AC o e e e 25.164

\callergraph

\callgraph

\categoryo 25.28
\cite 25.128
\class 25.29
\code 25.165
\collaborationgraph 25.19
\concept 25.30
eond 25.84
\copybrief 25.167
\copydetails 25.168
\CopydoC 25.166
\copyright 25.85
\date 25.86
\def .. 25.31
\defgroup 25.32

\deprecated 25.88
\details 25.89
\diafile 25.176
\dir oo 25.33
\directorygraph oo 25.17
\docbookinclude oo oL 25.159
\docbookonly 25.169
\dontinclude 25.143
\dot 25.170
\dotfile 25.174
\doxyconfig 25177
e 25.178
\else 25.92
\elseif 25.93
\em. . Lo 25.179
\emoji ... 25.171
\endcode 25.180
\endcond 25.94
\enddocbookonly 25.181
\enddot 25.182
\endhtmlonly 25.186
\endif 25.95
\endinternal 25.36
\endlatexonly 25.187
\endlink 25.129
\endmanonly 25.188
\endmsc 25.183
\endparblock o 25.105

Generated by Doxygen 1.13.1

172

Special Commands

\endrtfonly 25.189
\endsecreflist o 25.134
\endverbatim 25.190
\enduml 25.184
\endxmlonly 25.191
\enum ..o L 25.34
\example L 25.35
\exception 25.96
\extends 25.37
MO 25.193
M) 25.194
S . 25.192
M 25.195
Ml 25.196
M 25.197
Mo 25.198
Mile . . . 25.38
Mileinfoo 25.39
Mo 25.41
\groupgraph 25.23
\headerfile 25.42
\hidecallergraph 25.6
\hidecallgraph 25.4
\hidecollaborationgraph 25.20
\hidedirectorygraph 25.18
\hideenumvalues 25.26
\hidegroupgraph 25.24
\hideincludedbygraph 25.16
\hideincludegraph L. 25.14
\hideinheritancegraph 25.22
\hideinlinesource 25.12
\hiderefby 25.8
\hiderefs 25.10
\hideinitializer L 25.43
\htmlinclude L. 25.155
\htmlonly 25.199
Nidlexcept Lo 25.44
N 25.97
Nfnot . L L 25.98
\Nimage 25.200
\implements 25.45
\important 25.99
\include 25.144
\includedoc 25.146
\includedbygraph 25.15
\includegraph 25.13
\includelineno 25.145
\ingroup 25.46
\inheritancegraph, 25.21
\internal 25.48
\invariant 25.100
\interface 25.47
\latexincludeo 25.156
\latexonly 25.201
i 25.203
\line 25.147
\lineinfo 25.40
\ink .. 25.130
\mainpage 25.49
\maninclude 25.158
\manonly 25.202
\memberof 25.50
\module 25.51
\MSC . . . 25.172
\mscfile 25.175
N 25.204
\name 25.52
\Namespace e 25.53
\NOOP .« o o e 25.90
\nosubgrouping 25.54
\note 25.101
\overload 25.55
P 25.205

\package 25.56
\Page 25.57
\par .o 25.102
\paragraph 25.140
\paramo 25.103
\parblock 25.104
\post 25.107
\Pre ..o 25.108
\private 25.58
\privatesection oL 25.59
\property 25.60
\protected 25.61
\protectedsection L. 25.62
\protocol 25.63
\public 25.64
\publicsection oL 25.65
PUFE . L o o 25.66
\qualifier L 25.27
\raisewarning 25.91
\ref o 25.131
\refitem. 25.132
\related L 25.68
\relates 25.67
\relatedalso L 25.70
\relatesalso o 25.69
fremark 25.109
fremarks 25.110
result 25.111
\return . . . L. 25.112
\returns L 25.113
\retval 25.114
\rtfincludeo 25.157
\rtfonly 25.206
NS . . e 25.115
\secreflist 25.133
\section 25.137
\SEE . . 25.116
\short 25.117
\showdate 25.87
\showenumvalues 25.25
\showinitializer 25.71
\showinlinesource 25.11
\showrefby 25.7
\showrefs 25.9
\since 25.118
\skip . .. 25.148
\skipline 25.149
\snippet 25.150
\snippetdoc 25.152
\snippetlineno 25.151
\static 25.72
\startumlo 25.173
\struct 25.73
\subpage 25.135
\subparagraph o 25.141
\subsection L. 25.138
\subsubparagraph 25.142
\subsubsection o 0oL 25.139
\tableofcontents L 25.136
Mtest 25.119
\throw 25.120
\throws 25.121
todo 25.122
\tparam 25.106
\typedef 25.74
\plantumlfile o 25.185
\union 25.75
\until . ..o 25.153
War. . .. 25.76
\Werbatim 25.207
\verbinclude o 25.154
Wersion 25.123
\Whdiflow 25.77

Generated by Doxygen 1.13.1

25.2 \addtogroup <name> [(title)]

Wwarning 25.124
\weakgroup 25.78
Wmlinclude oo 25.160
mlonly 25.208
Wrefitem . ..o oL 25.125
e 25.213
\@ . . 25.210
N 25.209
& 25.212
A 25.211
N 25.215
S e 25.222

> 25.216
W 25.214
Ao 25.217
L 25.218
LY 25.219
2 25.220
LT 25.221
L 25.223
o 25.224
e 25.225
e 25.226

The following subsections provide a list of all commands that are recognized by Doxygen. Unrecognized commands

are treated as normal text.

Structural indicators

25.2 \addtogroup <name> [(title)]

Defines a group just like \defgroup, but in contrast to that command using the same <name> more than once will
not result in a warning, but rather one group with a merged documentation and the first title found in any of the

commands.

The title is optional, so this command can also be used to add a number of entities to an existing group using @ {

and @} like this:

/! \addtogroup mygrp

*+ Additional documentation for group ’'mygrp’

* Qf
*/

/%!

* A function
*/

void funcl ()

{

}

/*! Another function =/
void func2 ()

{

}

/! @Y} %/

See also

page Grouping, sections \defgroup, \ingroup, and \weakgroup.

25.3 \callgraph

When this command is put in a comment block of a function or method and HAVE_DOQOT is set to YES, then Doxy-
gen will generate a call graph for that function (provided the implementation of the function or method calls other
documented functions). The call graph will be generated regardless of the value of CALL_GRAPH.

Note

The completeness (and correctness) of the call graph depends on the Doxygen code parser which is not

perfect.

Generated by Doxygen 1.13.1

174 Special Commands

See also

section \callergraph, section \hidecallgraph, section \hidecallergraph and option CALL_GRAPH

25.4 \hidecallgraph

When this command is put in a comment block of a function or method and then Doxygen will not generate a call
graph for that function. The call graph will not be generated regardless of the value of CALL_GRAPH.
Note
The completeness (and correctness) of the call graph depends on the Doxygen code parser which is not
perfect.
See also

section \callergraph, section \callgraph, section \hidecallergraph and option CALL_GRAPH

25.5 \callergraph

When this command is put in a comment block of a function or method and HAVE_DOT is set to YES, then Doxygen
will generate a caller graph for that function (provided the implementation of the function or method is called by other
documented functions). The caller graph will be generated regardless of the value of CALLER_GRAPH.

Note
The completeness (and correctness) of the caller graph depends on the Doxygen code parser which is not
perfect.

See also

section \callgraph, section \hidecallgraph, section \hidecallergraph and option CALLER_GRAPH

25.6 \hidecallergraph

When this command is put in a comment block of a function or method and then Doxygen will not generate a caller
graph for that function. The caller graph will not be generated regardless of the value of CALLER_GRAPH.

Note
The completeness (and correctness) of the caller graph depends on the Doxygen code parser which is not
perfect.

See also

section \callergraph, section \callgraph, section \hidecallgraph and option CALLER_GRAPH

25.7 \showrefby

When this command is put in a comment block of a function, method or variable, then Doxygen will generate an
overview for that function, method, variable of the, documented, functions and methods that call / use it. The
overview will be generated regardless of the value of REFERENCED_BY_RELATION.

Note
The completeness (and correctness) of the overview depends on the Doxygen code parser which is not
perfect.

See also

section \showrefs, section \hiderefby, section \hiderefs and option REFERENCED_BY_RELATION

Generated by Doxygen 1.13.1

25.8 \hiderefby 175

25.8 \hiderefby

When this command is put in a comment block of a function, method or variable then Doxygen will not generate an
overview for that function, method or variable of the functions and methods that call / use it. The overview will not
be generated regardless of the value of REFERENCED_BY_RELATION.

Note

The completeness (and correctness) of the overview depends on the Doxygen code parser which is not
perfect.

See also

section \showrefs, section \showrefby, section \hiderefs and option REFERENCED_BY_RELATION

25.9 \showrefs

When this command is put in a comment block of a function or method, then Doxygen will generate an overview for
that function or method of the functions and methods that call it. The overview will be generated regardless of the
value of REFERENCES_RELATION.

Note

The completeness (and correctness) of the overview depends on the Doxygen code parser which is not
perfect.

See also

section \showrefby, section \hiderefby, section \hiderefs and option REFERENCES_RELATION

25.10 \hiderefs

When this command is put in a comment block of a function or method and then Doxygen will not generate an
overview for that function or method of the functions and methods that call it. The overview will not be generated
regardless of the value of REFERENCES_RELATION.

Note

The completeness (and correctness) of the overview depends on the Doxygen code parser which is not
perfect.

See also

section \showrefs, section \showrefby, section \hiderefby and option REFERENCES_RELATION

25.11 \showinlinesource

When this command is put in a comment block of a function, multi-line macro, enum or a list initialized variable then
Doxygen will generate the inline source for that member. The inline source will be generated regardless of the value
of INLINE_SOURCES.

See also

section \hideinlinesource, option INLINE_SOURCES

25.12 \hideinlinesource

When this command is put in a comment block of a function, multi-line macro, enum or a list initialized variable then
Doxygen will not generate the inline source for that member. The inline source will not be generated regardless of
the value of INLINE_SOURCES.

See also

section \showinlinesource, option INLINE_SOURCES

Generated by Doxygen 1.13.1

176 Special Commands

25.13 \includegraph

When this command is put in a comment block of a file then Doxygen will generate an include graph for that file.
The include graph will be generated regardless of the value of INCLUDE_GRAPH.

See also

section \hideincludegraph, section \includedbygraph, section \hideincludedbygraph and option INCLUDE_GRAPH

25.14 \hideincludegraph

When this command is put in a comment block of a file then Doxygen will not generate an include graph for that file.
The include graph will not be generated regardless of the value of INCLUDE_GRAPH.

See also

section \includegraph, section \includedbygraph, section \hideincludedbygraph and option INCLUDE_GRAPH

25.15 \includedbygraph

When this command is put in a comment block of an include file then Doxygen will generate an included by graph
for that include file. The included by graph will be generated regardless of the value of INCLUDED_BY_GRAPH.

See also

section \hideincludedbygraph, section \ncludegraph, section \hideincludegraph and option INCLUDED_BY_GRAPH

25.16 \hideincludedbygraph

When this command is put in a comment block of an include file then Doxygen will not generate an included by graph
for that include file. The included by graph will not be generated regardless of the value of INCLUDED_BY_GRAPH.

See also

section \includedbygraph, section \ncludegraph, section \hideincludegraph and option INCLUDED_BY_GRAPH

25.17 \directorygraph

When this command is put in a comment block of a directory (see section \dir) then Doxygen will generate a directory
graph for that directory. The directory graph will be generated regardless of the value of DIRECTORY_GRAPH.

See also

section \hidedirectorygraph, option DIRECTORY_GRAPH

25.18 \hidedirectorygraph

When this command is put in a comment block of a directory (see section \dir) then Doxygen will not gener-
ate a directory graph for that directory. The directory graph will not be generated regardless of the value of
DIRECTORY_GRAPH.

See also

section \directorygraph, option DIRECTORY_GRAPH

Generated by Doxygen 1.13.1

25.19 \collaborationgraph 177

25.19 \collaborationgraph

When this command is put in a comment block of a class then Doxygen will generate a collaboration graph for that
class. The collaboration graph will be generated regardless of the value of COLLABORATION_GRAPH.

See also

section \hidecollaborationgraph, option COLLABORATION_GRAPH

25.20 \hidecollaborationgraph

When this command is put in a comment block of a class then Doxygen will not generate a collaboration graph for
that class. The collaboration graph will not be generated regardless of the value of COLLABORATION_GRAPH.

See also

section \collaborationgraph, option COLLABORATION_GRAPH

25.21 \inheritancegraph['{option}']

When this command is put in a comment block of a class then Doxygen will generate an inheritance graph for
that class conforming the option. The inheritance graph will be generated, conforming the option, regard-
less of the value of CLASS_GRAPH. The possible values of opt ion are the same values as can be used with
CLASS_GRAPH. In case no option is specified the value YES is assumed.

See also

section \hideinheritancegraph, option CLASS_GRAPH

25.22 \hideinheritancegraph

When this command is put in a comment block of a class then Doxygen will not generate an inheritance graph for
that class. The inheritance graph will not be generated regardless of the value of CLASS_GRAPH.

See also

section \inheritancegraph, option CLASS_GRAPH

25.23 \groupgraph

When this command is put in a comment block of a \defgroup command then Doxygen will generate a group
dependency graph for that group. The group graph will be generated regardless of the value of GROUP_GRAPHS.

See also

section \hidegroupgraph, option GROUP_GRAPHS

25.24 \hidegroupgraph

When this command is put in a comment block of a \defgroup command then Doxygen will not generate a group de-
pendency graph for that group. The group graph will not be generated regardless of the value of GROUP_GRAPHS.

See also

section \groupgraph, option GROUP_GRAPHS

Generated by Doxygen 1.13.1

178 Special Commands

25.25 \showenumvalues

When this command is put in a comment block of an enum then doxygen will show the specified enum values for
that enum, regardless of the value of SHOW_ENUM_VALUES.

See also

section \hideenumvalues, option SHOW_ENUM_VALUES

25.26 \hideenumvalues

When this command is put in a comment block of an enum then doxygen will not show the specified enum values
for that enum, regardless of the value of SHOW_ENUM_VALUES.

See also

section \showenumvalues, option SHOW_ENUM_VALUES

25.27 \qualifier <label>

"(text)"

With this command it is possible to add custom qualifier labels to members and classes. These labels will be shown

in the output in the same way as the automatically generated labels such as "static", "inline", and "final".
For instance to indicate that a function is only meant for testing purposes one could add \qualifier test

25.28 \category <name> [<header-file>>] [<header-name>]

For Objective-C only: Indicates that a comment block contains documentation for a class category with name
<name>. The arguments are equal to the \class command.

See also

section \class.

25.29 \class <name> [<header-file>] [<header-name>]

Indicates that a comment block contains documentation for a class with name <name>. Optionally a header file
and a header name can be specified. If the header-file is specified, a link to a verbatim copy of the header will
be included in the HTML documentation. The <header-name> argument can be used to overwrite the name of
the link that is used in the class documentation to something other than <header-file>. This can be useful if the
include name is not located on the default include path (like <X11/X.h>). With the <header-name> argument you
can also specify how the include statement should look like, by adding either quotes or sharp brackets around the
name. Sharp brackets are used if just the name is given. Note that the last two arguments can also be specified
using the \headerfile command.

Example:

/* A dummy class =/

class Test
{
}i

/x! \class Test class.h "inc/class.h"
x» \brief This is a test class.
*
* Some details about the Test class.
*/

See Class example for the corresponding IKTEX documentation that is generated by Doxygen.

Generated by Doxygen 1.13.1

25.30 \concept <name> 179

25.30 \concept <name>

Indicates that a comment block contains documentation for a C++20 concept with name <name>. See also the
\headerfile command to specify the header a user should be included to use the concept.

25.31 \def <name>

Indicates that a comment block contains documentation for a #de £ ine macro.

Example:

/*! \file define.h
\brief testing defines

This is to test the documentation of defines.

*/

/x!

\def MAX(x,y)

Computes the maximum of \a x and \a y.
*/

/!
\brief Computes the absolute value of its argument \a x.
\param x input value.
\returns absolute value of \a x.
*/
#define ABS(x) (((x)>0)7?(x):—(x))
#defin X(x,y) ((x)>(y)?(x):(y))
#define MIN(x,vy) ((x)>(y)?(y):(x))
/*!< Computes the minimum of \a x and \a y. */

See Define example for the corresponding IATEX documentation that is generated by Doxygen.

25.32 \defgroup <name> (group title)

Indicates that a comment block contains documentation for a topics of classes, modules, concepts, files or names-
paces. This can be used to categorize symbols, and document those categories. You can also use groups as
members of other groups, thus building a hierarchy of groups.

The <name> argument should be a single-word identifier.

See also

page Grouping, sections \ingroup, \addtogroup, and \weakgroup.

25.33 \dir [<path fragment>]

Indicates that a comment block contains documentation for a directory. The "path fragment" argument should
include the directory name and enough of the path to be unique with respect to the other directories in the project.
The STRIP_FROM_PATH option determines what is stripped from the full path before it appears in the output.

25.34 \enum <name>

Indicates that a comment block contains documentation for an enumeration, with name <name>. If the enum is a
member of a class and the documentation block is located outside the class definition, the scope of the class should
be specified as well. If a comment block is located directly in front of an enum declaration, the \enum comment
may be omitted.

Note:

The type of an anonymous enum cannot be documented, but the values of an anonymous enum can.

Generated by Doxygen 1.13.1

180 Special Commands

Example:

class Enum_Test
{
public:
enum TEnum { Vall, Val2 };

/*! Another enum, with inline docs */
enum AnotherEnum
{
V1, /x!< value 1 x/
V2 /x!< value 2 x/
}i
}i

/*! \class Enum_Test
* The class description.
*/

/%! \enum Enum_Test: :TEnum
* A description of the enum type.
*/
/*! \var Enum_Test::TEnum Enum_Test::Vall
* The description of the first enum value.

*/

See Enum example for the corresponding IATEX documentation that is generated by Doxygen.

25.35 \example['{lineno}'] <file-name>

Indicates that a comment block contains documentation for a source code example. The name of the source file is
<file-name>. The contents of this file will be included in the documentation, just after the documentation contained
in the comment block. You can add option {1ineno} to enable line numbers for the example if desired. All
examples are placed in a list. The source code is scanned for documented members and classes. If any are found,
the names are cross-referenced with the documentation. Source files or directories can be specified using the
EXAMPLE_PATH tag of Doxygen's configuration file.

If <file-name> itself is not unique for the set of example files specified by the EXAMPLE_PATH tag, you can include
part of the absolute path to disambiguate it.

If more than one source file is needed for the example, the \include command can be used.

Example:

/*x A Example_Test class.
* More details about this class.
*/

class Example_Test
{
public:
/*+ An example member function.
* More details about this function.
*/
void example () ;
i

void Example_Test::example() {}

/** \example example_test.cpp
* This is an example of how to use the Example_Test class.
* More details about this example.
*/

Where the example file example_test . cpp looks as follows:

void main ()

{
Example_Test t;
t.example () ;

}
See Example example for the corresponding IATEX documentation that is generated by Doxygen.

See also

section \include.

Generated by Doxygen 1.13.1

25.36 \endinternal 181

25.36 \endinternal

This command ends a documentation fragment that was started with a \internal command. The text between
\internal and \endinternal will only be visible if INTERNAL_DOCS is set to YES.

25.37 \extends <name>

This command can be used to manually indicate an inheritance relation, when the programming language does not
support this concept natively (e.g. C).

The file manual . c in the example directory shows how to use this command (see also \memberof for the complete
file).

See Extends example for the corresponding IATEX documentation that is generated by Doxygen.

See also

section \implements and section \memberof

25.38 \file [<name>]

Indicates that a comment block contains documentation for a source or header file with name <name>. The file
name may include (part of) the path if the file-name alone is not unique. If the file name is omitted (i.e. the line after
\file is left blank) then the documentation block that contains the \ £ile command will belong to the file it is
located in.

Important

The documentation of global functions, variables, typedefs, and enums will only be included in the output if
the file they are in is documented as well or if EXTRACT_ALL is setto YES.

Example:

/% \file file.h

* A brief file description.

* A more elaborated file description.
*/

/%%

* A global integer value.

* More details about this value.

*/

extern int globalValue;

See File example for the corresponding IATEX documentation that is generated by Doxygen.

Note
In the above example JAVADOC_AUTOBRIEF has been set to YES in the configuration file.

25.39 \fileinfo['{'option'}']

Shows (part) of the file name in which this command is placed. The option can be name, extension,
filename, directory or, full, with

+ name the name of the file without extension

* extension the extension of the file

+ filename the filename i.e. name plus extension
* directory the directory of the given file

« full the full path and filename of the given file.

In case no option is specified the £ilename is used unless FULL_PATH_NAMES is set to YES in which case
full is used.

Generated by Doxygen 1.13.1

182 Special Commands

Note

the command \fileinfo cannot be used as argument to the \file command

See also

section \lineinfo

25.40 \lineinfo

Shows the line number inside the file at which this command is placed.
See also

section \fileinfo

25.41 \fn (function declaration)

Indicates that a comment block contains documentation for a function (either global or as a member of a class). This
command is only needed if a comment block is not placed in front (or behind) the function declaration or definition.
If your comment block is in front of the function declaration or definition this command can (and to avoid redundancy
should) be omitted.

A full function declaration including arguments should be specified after the \ £n command on a single line, since
the argument ends at the end of the line!

This command is equivalent to \var, \typedef, and \property.

Warning
Do not use this command if it is not absolutely needed, since it will lead to duplication of information and thus
to errors.

Example:

class Fn_Test

{

public:
const char xmember (char, int) (std::out_of_range);
}i
const char *Fn_Test::member (char c,int n) (std::out_of_range) {}

/! \class Fn_Test
x» \brief Fn_Test class.
*
* Details about Fn_Test.
*/

/*! \fn const char *Fn_Test::member (char c,int n)
\brief A member function.
\param c a character.
\param n an integer.
\exception std::out_of_range parameter is out of range.
\return a character pointer.

/

B S R

See Fn example for the corresponding IATEX documentation that is generated by Doxygen.

See also

sections \var, \property, and \typedef.

25.42 \headerfile <header-file> [<header-name>]

Intended to be used for class, struct, or union documentation, where the documentation is in front of the definition.
The arguments of this command are the same as the second and third argument of \class. The <header-file> name
refers to the file that should be included by the application to obtain the definition of the class, struct, or union. The

Generated by Doxygen 1.13.1

25.43 \hideinitializer 183

<header-name> argument can be used to overwrite the name of the link that is used in the class documentation
to something other than <header-file>>. This can be useful if the include name is not located on the default include
path (like <X11/X.h>).

With the <header-name> argument you can also specify how the include statement should look like, by adding
either double quotes or sharp brackets around the name. By default sharp brackets are used if just the name is
given.

If a pair of double quotes is given for either the <header-file> or <header-name> argument, the current file (in
which the command was found) will be used but with quotes. So for a comment block with a \headerfile
command inside a file test . h, the following three commands are equivalent:

\headerfile test.h "test.h"
\headerfile test.h ""
\headerfile ""

To get sharp brackets you do not need to specify anything, but if you want to be explicit you could use any of the
following:

\headerfile test.h <test.h>
\headerfile test.h <>
\headerfile <>

To globally reverse the default include representation to local includes you can set FORCE_LOCAL_INCLUDES to
YES.
To disable the include information altogether set SHOW_HEADERFILE to NO.

25.43 \hideinitializer

By default the value of a define and the initializer of a variable are displayed unless they are longer than 30 lines.
By putting this command in a comment block of a define or variable, the initializer is always hidden. The maximum
number of initialization lines can be changed by means of the configuration parameter MAX_INITIALIZER_LINES,
the default value is 30.

See also

section \showinitializer.

25.44 \idlexcept <name>

Indicates that a comment block contains documentation for a IDL exception with name <name>.

25.45 \implements <name>

This command can be used to manually indicate an inheritance relation, when the programming language does not
support this concept natively (e.g. C).

The file manual . c in the example directory shows how to use this command (see also \memberof for the complete
file).

See Implements example for the corresponding IATEX documentation that is generated by Doxygen.

See also

section \extends and section \memberof

25.46 \ingroup (<groupname> [<groupname>]x)

If the \ingroup command is placed in a comment block of a compound entity (like class, file or namespace), then
it will be added to the group(s) identified by the <groupname>(s). In case of members (like variable, functions,
typedefs and enums) the member will be added only to one group (to avoid ambiguous linking targets in case a
member is not documented in the context of its class, namespace or file, but only visible as part of a group).

See also

page Grouping, sections \defgroup, \addtogroup, and \weakgroup

Generated by Doxygen 1.13.1

184 Special Commands

25.47 \interface <name> [<header-file>] [<header-name>]

Indicates that a comment block contains documentation for an interface with name <name>. The arguments are
equal to the arguments of the \class command.

See also

section \class.

25.48 \internal

This command starts a documentation fragment that is meant for internal use only. The fragment naturally ends
at the end of the comment block. You can also force the internal section to end earlier by using the \endinternal
command.

If the \internal command is put inside a section (see for example \section) all subsections after the command
are considered to be internal as well. Only a new section at the same level will end the fragment that is considered
internal.

You can use INTERNAL_DOCS in the configuration file to show (YES) or hide (NO) the internal documentation.

See also

section \endinternal.

25.49 \mainpage [(title)]

If the \mainpage command is placed in a comment block the block is used to customize the index page (in HTML)
or the first chapter (in IATEX).

The title argument is optional and replaces the default title that Doxygen normally generates. If you do not want any
title you can specify not it 1e as the argument of \mainpage.

Here is an example:

/*! \mainpage My Personal Index Page
*

\section intro_sec Introduction
This is the introduction.
\section install_sec Installation

\subsection stepl Step 1: Opening the box

etc...

/

L S S S I S

You can refer to the main page using: \ref index.
See also

section \section, section \subsection, and section \page.

25.50 \memberof <name>

This command makes a function a member of a class in a similar way as \relates does, only with this command the
function is represented as a real member of the class. This can be useful when the programming language does
not support the concept of member functions natively (e.g. C).

It is also possible to use this command together with \public, \protected or \private.

Generated by Doxygen 1.13.1

25.50 \memberof <name> 185

Example:

The file manual . c in the example directory shows how to use this command:
/**

* \file manual.c

*/

typedef struct Object Object; //!1< Object type
typedef struct Vehicle Vehicle; //!< Vehicle type

typedef struct Car Car; //!< Car type
typedef struct Truck Truck; //1< Truck type
/%!
* Base object class.
*/
struct Object
{
int ref; //!< \private Reference count.
Yi
/%!

* Increments object reference count by one.
* \public \memberof Object
*/

static Object x objRef (Object =xobj);

/!

* Decrements object reference count by one.
+ \public \memberof Object

*/
static Object x objUnref (Object *obj);

/x!

* Vehicle class.

* \extends Object

*/
struct Vehicle

{

Object base; //1< \protected Base class.
Yi

/x!
* Starts the vehicle.
* \public \memberof Vehicle
*/
void vehicleStart (Vehicle xobj);

/x!
* Stops the vehicle.
+ \public \memberof Vehicle
*/
void vehicleStop (Vehicle xobj);

/* !
* Car class.
» \extends Vehicle
*/
struct Car
{
Vehicle base; //!< \protected Base class.
}i

/x!
* Truck class.
» \extends Vehicle
*/

struct Truck

{

Vehicle base; //!< \protected Base class.
Vi
/*!

* Main function.

*

+ Ref vehicleStart (), objRef (), objUnref ().
*/

int main (void)
{

Car c;

Generated by Doxygen 1.13.1

186 Special Commands

vehicleStart ((Vehiclex) &c);

}

See Car struct reference example for the corresponding IATEX documentation that is generated by Doxygen.

See also

sections \extends, \implements, \public, \protected and \private.

25.51 \module <name>

Indicates that a comment block contains documentation for a C++20 module with name <name

25.52 \name [(header)]

This command turns a comment block into a header definition of a member group. The comment block should be
followed by a @{ ... @} block containing the members of the group.
See section Member Groups for an example.

25.53 \namespace <name>

Indicates that a comment block contains documentation for a namespace with name <name>.

25.54 \nosubgrouping

This command can be put in the documentation of a class. It can be used in combination with member grouping to
avoid that Doxygen puts a member group as a subgroup of a Public/Protected/Private/... section.

See also

sections \publicsection, \protectedsection and \privatesection.

25.55 \overload [(function declaration)]
This command can be used to generate the following standard text for an overloaded member function:

This is an overloaded member function, provided for convenience. It differs from the above function
only in what argument(s) it accepts.

If the documentation for the overloaded member function is not located in front of the function declaration or defini-
tion, the optional argument should be used to specify the correct declaration of the overloaded function. Of course
when the \overload command is directly in front of the overloaded member function and the optional argument
is used this should also be the correct declaration of the overloaded function.

Any other documentation that is inside the documentation block will by appended after the generated message.

Note 1:

You are responsible that there is indeed an earlier documented member that is overloaded by this one. To
prevent that document reorders the documentation you should set SORT_MEMBER_DOCS to NO in this case.

Note 2:

Only one \overload command can be present in a comment block.

Generated by Doxygen 1.13.1

25.56

\package <name> 187

Example:

class Overload_Test
{
public:
void drawRect (int,int,int,int);
void drawRect (const Rect &r);
i

void Overload_Test::drawRect (int x,int y,int w,int h) {}
void Overload_Test::drawRect (const Rect &r) {}

/! \class Overload_Test
» \brief A short description.
*

* More text.

*/
/* ! \fn void Overload_Test::drawRect (int x,int y,int w,int h)
* This command draws a rectangle with a left upper corner at (\a X \a Yy),
» width \a w and height \a h.
*/
/!
* \overload void Overload_Test::drawRect (const Rect &r)
*/

See Overload example for the corresponding IATEX documentation that is generated by Doxygen.

25.56 \package <name>

Indicates that a comment block contains documentation for a Java package with name <name>.

25.57 \page <name>> (title)

Indicates that a comment block contains a piece of documentation that is not directly related to one specific class,
file or member. The HTML generator creates a page containing the documentation. The IATEX generator starts a
new section in the chapter 'Page documentation'.

Example:

Note:

/*! \page pagel A documentation page
\tableofcontents
Leading text.
\section sec An example section
This page contains the subsections \ref subsectionl and \ref subsection2.
For more info see page \ref page2.
\subsection subsectionl The first subsection
Text.
\subsection subsection2 The second subsection
More text.

*/

/%! \page page2 Another page
Even more info.

*/

See Page example for the corresponding IATEX documentation that is generated by Doxygen.

The <name> argument consists of a combination of letters and number digits. If you wish to use upper
case letters (e.g. MYPAGE1), or mixed case letters (e.g. MyPagel) in the <name> argument, you should
set CASE_SENSE_NAMES to YES. However, this is advisable only if your file system is case sensitive.
Otherwise (and for better portability) you should use all lower case letters (e.g. mypagel) for <name> in all
references to the page.

See also

section \section, section \subsection, and section \ref.

Generated by Doxygen 1.13.1

188 Special Commands

25.58 \private

Indicates that the member documented by the comment block is private, i.e., should only be accessed by other
members in the same class.

Note that Doxygen automatically detects the protection level of members in object-oriented languages. This com-
mand is intended for use only when the language does not support the concept of protection level natively (e.g. C,
PHP 4).

For starting a section of private members, in a way similar to the "private:" class marker in C++, use \privatesection.

See also

sections \memberof, \public, \protected and \privatesection.

25.59 \privatesection

Starting a section of private members, in a way similar to the "private:" class marker in C++. Indicates that the
member documented by the comment block is private, i.e., should only be accessed by other members in the same
class.

See also

sections \memberof, \public, \protected and \private.

25.60 \property (qualified property name)

Indicates that a comment block contains documentation for a property (either global or as a member of a class).
This command is equivalent to \fn, \typedef, and \var.

See also

sections \fn, \typedef, and \var.

25.61 \protected

Indicates that the member documented by the comment block is protected, i.e., should only be accessed by other
members in the same or derived classes.

Note that Doxygen automatically detects the protection level of members in object-oriented languages. This com-
mand is intended for use only when the language does not support the concept of protection level natively (e.g. C,
PHP 4).

For starting a section of protected members, in a way similar to the "protected:" class marker in C++, use
\protectedsection.

See also

sections \memberof, \public, \private and \protectedsection.

25.62 \protectedsection

Starting a section of protected members, in a way similar to the "protected:" class marker in C++. Indicates that the
member documented by the comment block is protected, i.e., should only be accessed by other members in the
same or derived classes.

See also

sections \memberof, \public, \private and \protected.

Generated by Doxygen 1.13.1

25.63 \protocol <name> [<header-file>] [<header-name>] 189

25.63 \protocol <name> [<header-file>] [<header-name>]

Indicates that a comment block contains documentation for a protocol in Objective-C with name <name>. The
arguments are equal to the \class command.

See also

section \class.

25.64 \public

Indicates that the member documented by the comment block is public, i.e., can be accessed by any other class or
function.

Note that Doxygen automatically detects the protection level of members in object-oriented languages. This com-
mand is intended for use only when the language does not support the concept of protection level natively (e.g. C,
PHP 4).

For starting a section of public members, in a way similar to the "public:" class marker in C++, use \publicsection.

See also

sections \memberof, \protected, \private and \publicsection.

25.65 \publicsection

Starting a section of public members, in a way similar to the "public:" class marker in C++. Indicates that the member
documented by the comment block is public, i.e., can be accessed by any other class or function.

See also

sections \memberof, \protected, \private and \public.

25.66 \pure

Indicates that the member documented by the comment block is pure virtual, i.e., it is abstract and has no imple-
mentation associated with it.

This command is intended for use only when the language does not support the concept of pure virtual methods
natively (e.g. C, PHP 4).

25.67 \relates <name>

This command can be used in the documentation of a non-member function <name>. It puts the function inside the
'related function' section of the class documentation. This command is useful for documenting non-friend functions
that are nevertheless strongly coupled to a certain class. It prevents the need of having to document a file, but only
works for functions.

Example:

/* !
% A String class.

*/

class String
{

friend int strcmp(const String &,const String &);
i

/!

* Compares two strings.

*/

int strcmp(const String &sl,const String &s2)
{

}

/*! \relates String

Generated by Doxygen 1.13.1

190 Special Commands

* A string debug function.
*/

void stringDebug()

{

}

See Relates example for the corresponding IATEX documentation that is generated by Doxygen.

25.68 \related <name>

Equivalent to \relates

25.69 \relatesalso <name>

This command can be used in the documentation of a non-member function <name>. It puts the function both
inside the 'related function' section of the class documentation as well as leaving it at its normal file documentation
location. This command is useful for documenting non-friend functions that are nevertheless strongly coupled to a
certain class. It only works for functions.

25.70 \relatedalso <name>

Equivalent to \relatesalso

25.71 \showinitializer

By default the value of a define and the initializer of a variable are only displayed if they are less than 30 lines
long. By putting this command in a comment block of a define or variable, the initializer is shown uncondi-
tionally. The maximum number of initialization lines can be changed by means of the configuration parameter
MAX_INITIALIZER_LINES, the default value is 30.

See also

section \hideinitializer.

25.72 \static

Indicates that the member documented by the comment block is static, i.e., it works on a class, instead of on an
instance of the class.

This command is intended for use only when the language does not support the concept of static methods natively
(e.g. C).

25.73 \struct <name> [<header-file>>] [<header-name>]

Indicates that a comment block contains documentation for a struct with name <name>. The arguments are equal
to the arguments of the \class command.

See also

section \class.

25.74 \typedef (typedef declaration)

Indicates that a comment block contains documentation for a typedef (either global or as a member of a class). This
command is equivalent to \fn, \property, and \var.

See also

section \fn, \property, and \var.

Generated by Doxygen 1.13.1

25.75 \union <name> [<header-file>>] [<header-name>] 191

25.75 \union <name> [<header-file>] [<header-name>]

Indicates that a comment block contains documentation for a union with name <name>. The arguments are equal
to the arguments of the \class command.

See also

section \class.

25.76 \var (variable declaration)

Indicates that a comment block contains documentation for a variable or enum value (either global or as a member
of a class). This command is equivalent to \fn, \property, and \typedef.

Note that for PHP one can also specify the type of the variable. The syntax is similar as for the phpDocumentor
but the description has to start at the next line, i.e.

@var datatype $varname
Description

See also

section \fn, \property, and \typedef.

25.77 \vhdlflow [(title for the flow chart)]

This is a VHDL specific command, which can be put in the documentation of a process to produce a flow chart of
the logic in the process. Optionally a title for the flow chart can be given.

Note

Currently the flow chart will only appear in the HTML output.

25.78 \weakgroup <name> [(title)]

Can be used exactly like \addtogroup, but has a lower priority when it comes to resolving conflicting grouping
definitions.
See also

page Grouping and section \addtogroup.

Section indicators
25.79 \attention { attention text }

Starts a paragraph where a message that needs attention may be entered. The paragraph will be indented. The
text of the paragraph has no special internal structure. All visual enhancement commands may be used inside the
paragraph. Multiple adjacent \attention commands will be joined into a single paragraph. The \attention
command ends when a blank line or some other sectioning command is encountered.

25.80 \author { list of authors }

Starts a paragraph where one or more author names may be entered. The paragraph will be indented. The text
of the paragraph has no special internal structure. All visual enhancement commands may be used inside the
paragraph. Multiple adjacent \author commands will be joined into a single paragraph. Each author description
will start a new line. Alternatively, one \author command may mention several authors. The \author command
ends when a blank line or some other sectioning command is encountered.

Generated by Doxygen 1.13.1

192 Special Commands

Example:

/*!
*» \brief Pretty nice class.
*» \details This class is used to demonstrate a number of section commands.
x \author John Doe
x* \author Jan Doe
* \version 4.1la
x \date 1990-2011
* \pre First initialize the system.
* \bug Not all memory is freed when deleting an object of this class.
* \warning Improper use can crash your application
*» \copyright GNU Public License.
*/

class SomeNiceClass {};

See Author example for the corresponding IATEX documentation that is generated by Doxygen.

25.81 \authors { list of authors }

Equivalent to \author.

25.82 \brief { brief description }

Starts a paragraph that serves as a brief description. For classes and files the brief description will be used in lists
and at the start of the documentation page. For class and file members, the brief description will be placed at the
declaration of the member and prepended to the detailed description. A brief description may span several lines
(although it is advised to keep it brief!). A brief description ends when a blank line or another sectioning command
is encountered. If multiple \brief commands are present they will be joined. See section \author for an example.
Synonymous to \short.

25.83 \bug { bug description }

Starts a paragraph where one or more bugs may be reported. The paragraph will be indented. The text of the
paragraph has no special internal structure. All visual enhancement commands may be used inside the paragraph.
Multiple adjacent \bug commands will be joined into a single paragraph. Each bug description will start on a new
line. Alternatively, one \lbug command may mention several bugs. The \bug command ends when a blank line or
some other sectioning command is encountered. See section \author for an example.

The description will also add an item to a separate Bug list and the two instances of the description will be cross-
referenced. Each item in the Bug list will be preceded by a header that indicates the origin of the item.

The Bug list and the corresponding entries can be disabled by setting the GENERATE_BUGLIST to NO.

25.84 \cond [(section-label)]

Starts a conditional section that ends with a corresponding \endcond command, which is typically found in another
comment block. The main purpose of this pair of commands is to (conditionally) exclude part of a file from processing
(in older version of Doxygen this could only be achieved using C preprocessor commands).

The section between \ cond and \endcond can be included by adding its section label to the ENABLED_SECTIONS
configuration option. If the section label is omitted, the section will be excluded from processing unconditionally. The
section label can be a logical expression build of section labels, round brackets, && (AND), || (OR) and ! (NOT). If
you use an expression you need to wrap it in round brackets, i.e \cond (!LABEL1 && LABEL2).

For conditional sections within a comment block one should use a \if ... \endif block. When using \cond and the
condition is not satisfied the current comment block is ended and everything until the matching \endcond is removed
and a new command block is started there.

Conditional sections can be nested. In this case a nested section will only be shown if it and its containing section
are included.

Here is an example showing the commands in action:

/*% An interface x/
class Intf
{
public:
/*% A method =*/

Generated by Doxygen 1.13.1

25.85 \copyright { copyright description } 193

virtual void func() = 0;
/// @cond TEST

/*+ A method used for testing x/
virtual void test () = 0;

/// @endcond
Vi

/// @cond DEV

/%

* The implementation of the interface
*/

class Implementation : public Intf

{
public:

void func();

/// Qcond TEST
void test();
/// @endcond

/// @cond
/** This method is obsolete and does
* not show up in the documentation.
*/
void obsolete () ;
/// @endcond
Vi

/// @endcond
The output will be different depending on whether or not ENABLED_SECTIONS contains TEST, or DEV

See also

sections \if, \ifnot, \else, \elseif, \endif, \endcond, and ENABLED_SECTIONS.

Note

Due to the moment of parsing the \ cond and \endcond commands cannot be used in ALIASES.

25.85 \copyright { copyright description }

Starts a paragraph where the copyright of an entity can be described. This paragraph will be indented. The text of
the paragraph has no special internal structure. See section \author for an example.

25.86 \date { date description }

Starts a paragraph where one or more dates may be entered. The paragraph will be indented. The text of the
paragraph has no special internal structure. All visual enhancement commands may be used inside the paragraph.
Multiple adjacent \dat e commands will be joined into a single paragraph. Each date description will start on a new
line. Alternatively, one \date command may mention several dates. The \date command ends when a blank
line or some other sectioning command is encountered. See section \author for an example.

25.87 \showdate "<format>" [<date_time>]

Shows the date and time based on the given <format> and <date_time>. Where the <format> is a string in
which the following tokens have a special meaning:

Code | Description
%oy Year without century as a zero-padded decimal number.

%Y Year with century as a decimal number.

Generated by Doxygen 1.13.1

194

Special Commands

Code

Description

Yom

Month as a zero-padded decimal number.

Y%o-m

The month as a decimal number.

%b

Month as locale’s abbreviated name.

%B

Month as locale’s full name.

%d

Day of the month as a zero-padded decimal number.

%-d

Day of the month as a decimal number.

YU

The weekday as a decimal number (1-7), where Monday is 1.

YoW

The weekday as a decimal number (0-6), where Sunday is 0.

Y%a

Weekday as locale’s abbreviated name.

%A

Weekday as locale’s full name.

Y%oH

Hour (24-hour clock) as a zero-padded decimal number.

%-H

Yol

()
Hour (24-hour clock) as a decimal number.
Hour (12-hour clock) as a zero-padded decimal number.

Yo-|

Hour (12-hour clock) as a decimal number.

%M

Minute as a zero-padded decimal humber.

Y%-M

Minute as a decimal number.

%S

Second as a zero-padded decimal number.

%-S

Second as a decimal number.

96p

Locale’s equivalent of either AM or PM.

%%

A % character.

Note that the <format> has to be between double quotes.
In case the <date_time> is specified it has to have the following representation:

+ optional date where date is:

a minus sign

a minus sign

4 digits for the year

one or 2 digits for the month

one or 2 digits for the day

» optional t ime where time is:

— whitespace

— one or 2 digits for the hours

— acolon sign

— one or 2 digits for the minutes

— when the format contains %S or %-S

= a colon sign

= 2 digits for the seconds

in case the <date_time> is not specified the current date and time are used.

Here is an example:

- \showdate "%A %d-%m-%Y" 2015-3-14

- \showdate
- \showdate "%
- \showdate "%

%d-%m-%y" 2015-3-14
%dsy" 2015-3-14
Sm-%Y $H:$M:%$S" 2015-3-14 03:04:15

- \showdate ";A ;df%mf%Y SH:S5M" 2015-3-14 03:04
In case OUTPUT_LANGUAGE=english this results in:

» Saturday 14-03-2015

Generated by Doxygen 1.13.1

25.88 \deprecated { description } 195

+ Sat 14-03-15
* 3.1415
+ Saturday 14-03-15 03:04:15
» Saturday 14-03-15 03:04
In case OUTPUT_LANGUAGE=dutch this results in:
» zaterdag 14-03-15
» za 14-03-2015
« 3.1415
+ zaterdag 14-03-15 03:04:15
« zaterdag 14-03-15 03:04

25.88 \deprecated { description }

Starts a paragraph indicating that this documentation block belongs to a deprecated entity. Can be used to de-
scribe alternatives, expected life span, etc. The paragraph will be indented. The text of the paragraph has no
special internal structure. All visual enhancement commands may be used inside the paragraph. Multiple adjacent
\deprecated commands will be joined into a single paragraph. Each deprecation description will start on a new
line. The \deprecated command ends when a blank line or some other sectioning command is encountered.
The description will also add an item to a separate Deprecated list and the two instances of the description will be
cross-referenced. Each item in the Deprecated list will be preceded by a header that indicates the origin of the item.
The Deprecated list and the corresponding entries can be disabled by setting the GENERATE_DEPRECATEDLIST
fo NO.

25.89 \details { detailed description }

Just like \brief starts a brief description, \details starts the detailed description. You can also start a new
paragraph (blank line) then the \details command is not needed.

25.90 \noop (text to be ignored)

All the text, including the command, till the end of the line is ignored. The command will most commonly be used in
combination with ALIASES to ignore not supported commands that are present for e.g. other processing tools.

25.91 \raisewarning (text to be shown as warning)

All the text, excluding the command, till the end of the line is literally shown as a documentation warning. The text,
including the command, is removed from the output. The command will most commonly be used in combination
with ALIASES to show a specific warning.

Example:
\raisewarning My specific warning
\warnNoDoc

\warnNoDoc{My specific warning}

together with:

ALIASES = warnNoDoc="\raisewarning Missing documentation"

ALIASES += warnNoDoc{l}="\raisewarning Incomplete documentation: \1"
will result in:

ex_1l.md:1: warning: My specific warning
ex_1l.md:3: warning: Missing documentation
ex_1.md:5: warning: Incomplete documentation: My specific warning

Generated by Doxygen 1.13.1

196 Special Commands

25.92 \else

Starts a conditional section if the previous conditional section was not enabled. The previous section should have
been started with a \if, \ifnot, or \elseif command.

See also

sections \if, \ifnot, \elseif, \endif.

25.93 \elseif (section-label)

Starts a conditional documentation section if the previous section was not enabled. A conditional section is disabled
by default. To enable it you must put the section-label after the ENABLED_SECTIONS tag in the configuration
file. The section label can be a logical expression build of section names, round brackets, && (AND), || (OR) and !
(NQOT). Conditional blocks can be nested. A nested section is only enabled if all enclosing sections are enabled as
well.

See also

sections \if, \ifnot, \else, \endif.

25.94 \endcond

Ends a conditional section that was started by \cond.

See also

section \cond.

Note

Due to the moment of parsing the \endcond and \cond commands cannot be used in ALIASES.

25.95 \endif

Ends a conditional section that was started by \if or \ifnot For each \if or \ifnot one and only one matching \endif must
follow.

See also

sections \if, \ifnot, \else, \elseif.

25.96 \exception <exception-object> { exception description }

Starts an exception description for an exception object with name <exception-object>. Followed by a description
of the exception. The existence of the exception object is not checked. The text of the paragraph has no spe-
cial internal structure. All visual enhancement commands may be used inside the paragraph. Multiple adjacent
\exception commands will be joined into a single paragraph. Each exception description will start on a new
line. The \exception description ends when a blank line or some other sectioning command is encountered.
See section \fn for an example.

25.97 \if (section-label)

Starts a conditional documentation section. The section ends with a matching \endif command. A conditional
section is disabled by default. To enable it you must put the section-label after the ENABLED_SECTIONS tag in the
configuration file.

The section label can be a logical expression build of section names, round brackets, && (AND), || (OR) and !
(NQOT). If you use an expression you need to wrap it in round brackets, i.e \i1f (!LABEL1l && LABEL2).
Conditional blocks can be nested. A nested section is only enabled if all enclosing sections are enabled as well.
The \1if and corresponding \endif have to be in the same comment block. When a conditional block needs to span
more than one comment block one has to use \cond ... \endcond.

Generated by Doxygen 1.13.1

25.98 \ifnot (section-label) 197

Example:

/

Unconditionally shown documentation.
\if Condl

Only included if Condl is set.
\endif
\if Cond2

Only included if Cond2 is set.

\if Cond3

Only included if Cond2 and Cond3 are set.

\endif

More text.
\endif
Unconditional text.

ok k% kK & & ok ok ok ok ok

~

You can also use conditional commands inside aliases. To document a class in two languages you could for instance
use:

Example 2:

/%! \english
* This is English.
+ \endenglish
x \dutch
* Dit is Nederlands.
* \enddutch
x/
class Example
{
}i

Where the following aliases are defined in the configuration file:
ALIASES = "english=\if english" \
"endenglish=\endif" \

"dutch=\if dutch" \
"enddutch=\endif"

and ENABLED_SECTIONS can be used to enable either english or dutch.
See also

sections \endif, \ifnot, \else, \elseif, \cond, \endcond, and ENABLED SECTIONS.

25.98 \ifnot (section-label)

Starts a conditional documentation section. The section ends with a matching \endif command. This conditional
section is enabled by default. To disable it you must put the section-label after the ENABLED_SECTIONS tag in the
configuration file. The section label can be a logical expression build of section names, round brackets, && (AND),
|| (OR) and ! (NOT).

See also

sections \endif, \if, \else, and \elseif, \cond, \endcond, and ENABLED_ SECTIONS.

25.99 \important { important text }

Starts a paragraph where a message that needs important may be entered. The paragraph will be indented. The
text of the paragraph has no special internal structure. All visual enhancement commands may be used inside the
paragraph. Multiple adjacent \ important commands will be joined into a single paragraph. The \important
command ends when a blank line or some other sectioning command is encountered.

Generated by Doxygen 1.13.1

198 Special Commands

25.100 \invariant { description of invariant }

Starts a paragraph where the invariant of an entity can be described. The paragraph will be indented. The text of the
paragraph has no special internal structure. All visual enhancement commands may be used inside the paragraph.
Multiple adjacent \invariant commands will be joined into a single paragraph. Each invariant description will
start on a new line. Alternatively, one \ invariant command may mention several invariants. The \invariant
command ends when a blank line or some other sectioning command is encountered.

25.101 \note { text}

Starts a paragraph where a note can be entered. The paragraph will be indented. The text of the paragraph has no
special internal structure. All visual enhancement commands may be used inside the paragraph. Multiple adjacent
\note commands will be joined into a single paragraph. Each note description will start on a new line. Alternatively,
one \note command may mention several notes. The \note command ends when a blank line or some other
sectioning command is encountered. See section \par for an example.

25.102 \par [(paragraph title)] { paragraph }

If a paragraph title is given this command starts a paragraph with a user defined heading. The heading extends until
the end of the line. The paragraph following the command will be indented.

If no paragraph title is given this command will start a new paragraph. This will also work inside other paragraph
commands (like \param or \warning) without ending that command.

The text of the paragraph has no special internal structure. All visual enhancement commands may be used inside
the paragraph. The \par command ends when a blank line or some other sectioning command is encountered.

Example:

/*! \class Par_Test
* Normal text.

\par User defined paragraph:
Contents of the paragraph.

\par
New paragraph under the same heading.

\note
This note consists of two paragraphs.
This is the first paragraph.

\par
And this is the second paragraph.

More normal text.

/

R S S

class Par_Test {};

See Par example for the corresponding IATEX documentation that is generated by Doxygen.

25.103 \param[<dir>] <parameter-name> { parameter description }

Starts a parameter description for a function parameter with name <parameter-name>, followed by a description
of the parameter. The existence of the parameter is checked and a warning is given if the documentation of this (or
any other) parameter is missing or not present in the function declaration or definition.

The \param command has an optional attribute, <dir>, specifying the direction of the parameter. Possible values
are "[in]", "[out]", and "[in,out]"; note the [square] brackets in this description. For the bidirecional values, directions
"in" and "out" can be specified in any order, and they can either be written altogether, or separated with a comma
(,) or a space. That means that for example values "[outin]" or "[in out]" are also valid. Note that it is also possible
to put whitespace between the command and the <dir>. When a parameter is both input and output, [in,out] is
used as attribute. Here is an example for the function memcpy :

/%!

« Copies bytes from a source memory area to a destination memory area,
* where both areas may not overlap.

* @param[out] dest The memory area to copy to.

* @param[in] src The memory area to copy from.

Generated by Doxygen 1.13.1

25.104 \parblock 199

* @param[in] n The number of bytes to copy
*/
void memcpy (void *dest, const void xsrc, size_t n);

The parameter description is a paragraph with no special internal structure. All visual enhancement commands may
be used inside the paragraph.

Multiple adjacent \param commands will be joined into a single paragraph. Each parameter description will start
on a new line. The \param description ends when a blank line or some other sectioning command is encountered.
See section \fn for an example.

Note that you can also document multiple parameters with a single \param command using a comma separated
list. Here is an example:

/** Sets the position.

* (@param x,y,z Coordinates of the position in 3D space.
*/

void setPosition (double x,double y,double z,double t)

{

}

Note that for PHP one can also specify the type (or types if you separate them with a pipe symbol) which are allowed
for a parameter (as this is not part of the definition). The syntax is the same as for the phpDocumentor, i.e.

@param datatypel|datatype2 $paramname description

25.104 \parblock

For commands that expect a single paragraph as argument (such as \par, \param and \warning), the \parblock
command allows to start a description that covers multiple paragraphs, which then ends with \endparblock.
Example:

/** Example of a param command with a description consisting of two paragraphs
* \param p

\parblock

First paragraph of the param description.

Second paragraph of the param description.
\endparblock
Rest of the comment block continues.

/

L S T

Note that the \parblock command may also appear directly after \param's first argument.

25.105 \endparblock

This ends a block of paragraphs started with \parblock.

25.106 \tparam <template-parameter-name> { description }

Starts a template parameter for a class or function template parameter with name <template-parameter-name>,
followed by a description of the template parameter.
Otherwise similar to \param.

25.107 \post { description of the postcondition }

Starts a paragraph where the postcondition of an entity can be described. The paragraph will be indented. The
text of the paragraph has no special internal structure. All visual enhancement commands may be used inside the
paragraph. Multiple adjacent \post commands will be joined into a single paragraph. Each postcondition will start
on a new line. Alternatively, one \post command may mention several postconditions. The \post command
ends when a blank line or some other sectioning command is encountered.

25.108 \pre { description of the precondition }

Starts a paragraph where the precondition of an entity can be described. The paragraph will be indented. The
text of the paragraph has no special internal structure. All visual enhancement commands may be used inside the

Generated by Doxygen 1.13.1

200 Special Commands

paragraph. Multiple adjacent \pre commands will be joined into a single paragraph. Each precondition will start
on a new line. Alternatively, one \pre command may mention several preconditions. The \pre command ends
when a blank line or some other sectioning command is encountered.

25.109 \remark { remark text }

Starts a paragraph where one or more remarks may be entered. The paragraph will be indented. The text of the
paragraph has no special internal structure. All visual enhancement commands may be used inside the paragraph.
Multiple adjacent \ remark commands will be joined into a single paragraph. Each remark will start on a new line.
Alternatively, one \ remark command may mention several remarks. The \ remark command ends when a blank
line or some other sectioning command is encountered.

25.110 \remarks { remark text }

Equivalent to \remark.

25.111 \result { description of the result value }

Equivalent to \return.

25.112 \return { description of the return value }

Starts a return value description for a function. The text of the paragraph has no special internal structure. All visual
enhancement commands may be used inside the paragraph. Multiple adjacent \ ret urn commands will be joined
into a single paragraph. The \return description ends when a blank line or some other sectioning command is
encountered. See section \fn for an example.

25.113 \returns { description of the return value }

Equivalent to \return.

25.114 \retval <return value> { description }

Starts a description for a function's return value with name <return value>, followed by a description of the return
value. The text of the paragraph that forms the description has no special internal structure. All visual enhancement
commands may be used inside the paragraph. Multiple adjacent \retval commands will be joined into a single
paragraph. Each return value description will start on a new line. The \retwval description ends when a blank line
or some other sectioning command is encountered.

25.115 \sa { references }

Starts a paragraph where one or more cross-references to classes, functions, methods, variables, files or URL may
be specified. Two names joined by either : : or # are understood as referring to a class and one of its members.
One of several overloaded methods or constructors may be selected by including a parenthesized list of argument
types after the method name.

Synonymous to \see.

See also

section autolink for information on how to create links to objects.

25.116 \see { references }

Equivalent to \sa. Introduced for compatibility with Javadoc.

Generated by Doxygen 1.13.1

25.117 \short { short description } 201

25.117 \short { short description }

Equivalent to \brief.

25.118 \since { text }

This command can be used to specify since when (version or time) an entity is available. The paragraph that follows
\'since does not have any special internal structure. All visual enhancement commands may be used inside the
paragraph. The \ since description ends when a blank line or some other sectioning command is encountered.

25.119 \test { paragraph describing a test case }

Starts a paragraph where one or more test cases can be described. The paragraph will be indented. The text of the
paragraph has no special internal structure. All visual enhancement commands may be used inside the paragraph.
Multiple adjacent \test commands will be joined into a single paragraph. Each test case description will start on
a new line. Alternatively, one \test command may mention several test cases. The \test command ends when
a blank line or some other sectioning command is encountered.

The description will also add an item to a separate Test list and the two instances of the description will be cross-
referenced. Each item in the Test list will be preceded by a header that indicates the origin of the item.

The Test list and the corresponding entries can be disabled by setting the GENERATE_TESTLIST to NO.

25.120 \throw <exception-object> { exception description }

Synonymous \exception.
Note:

the command \throws is a synonym for this command.

See also

section \exception

25.121 \throws <exception-object> { exception description }

Equivalent to \throw.

25.122 \todo { paragraph describing what is to be done }

Starts a paragraph where one or more todo items are described. The paragraph will be indented. The text of the
paragraph has no special internal structure. All visual enhancement commands may be used inside the paragraph.
Multiple adjacent \todo commands will be joined into a single paragraph. Each todo description will start on a
new line. Alternatively, one \todo command may mention several todo descriptions. The \todo command ends
when a blank line or some other sectioning command is encountered.

The description will also add an item to a separate Todo list and the two instances of the description will be cross-
referenced. Each item in the Todo list will be preceded by a header that indicates the origin of the item.

The Todo list and the corresponding entries can be disabled by setting the GENERATE_TODOLIST to NO.

25.123 \version { version number }

Starts a paragraph where one or more version strings may be entered. The paragraph will be indented. The
text of the paragraph has no special internal structure. All visual enhancement commands may be used inside the
paragraph. Multiple adjacent \version commands will be joined into a single paragraph. Each version description
will start on a new line. Alternatively, one \version command may mention several version strings. The \version
command ends when a blank line or some other sectioning command is encountered. See section \author for an
example.

Generated by Doxygen 1.13.1

202 Special Commands

25.124 \warning { warning message }

Starts a paragraph where one or more warning messages may be entered. The paragraph will be indented. The
text of the paragraph has no special internal structure. All visual enhancement commands may be used inside
the paragraph. Multiple adjacent \warning commands will be joined into a single paragraph. Each warning
description will start on a new line. Alternatively, one \warning command may mention several warnings. The
\warning command ends when a blank line or some other sectioning command is encountered. See section
\author for an example.

25.125 \xrefitem <key> "heading" "list title" { text }

This command is a generalization of commands such as \todo and \bug. It can be used to create user-defined text
sections which are automatically cross-referenced between the place of occurrence and a related page, which will
be generated. On the related page all sections of the same type will be collected.

The first argument <key> is an identifier uniquely representing the type of the section. The second argument is a
quoted string representing the heading of the section under which text passed as the fourth argument is put. The
third argument (list title) is used as the title for the related page containing all items with the same key. The second
and third string argument cannot contain a newline. The keys "todo", "test", "bug" and "deprecated"
are predefined.

To get an idea on how to use the \xrefitem command and what its effect is, consider the todo list, which (for
English output) can be seen an alias for the command

\xrefitem todo "Todo" "Todo List"

Since it is very tedious and error-prone to repeat the first three parameters of the command for each section, the
command is meant to be used in combination with the ALIASES option in the configuration file. To define a new
command \reminder, for instance, one should add the following line to the configuration file:

ALIASES += "reminder=\xrefitem reminders \"Reminder\" \"Reminders\""

Note the use of escaped quotes for the second and third argument of the \xre fitem command.
In case parameter "(heading)" is the empty string no heading is generated. This can be useful when used in
combination with the \page command e.g.

/** @page my_errors My Errors
% @brief Errors page

*

* Errors page contents.

*/

/x% \error ERROR 101: in case a file can not be opened.
Check about file system read/write access. =*/
#define MY_ERR_CANNOT_OPEN_FILE 101

/x* \error ERROR 102: in case a file can not be closed.
Check about file system read/write access. */
#define MY_ERR_CANNOT_CLOSE_FILE 102

with \error defined as

ALIASES += "error=\xrefitem my_errors \"\" \"\""

Commands to create links
25.126 \addindex (text)

This command adds (text) to the IATEX, DocBook and RTF index.

25.127 \anchor <word>

This command places an invisible, named anchor into the documentation to which you can refer with the \ref com-
mand.

See also

section \ref.

Generated by Doxygen 1.13.1

25.128 \cite <label> 203

25.128 \cite <label>

Adds a bibliographic reference in the text and in the list of bibliographic references. The <label> must be a valid
BibTeX label that can be found in one of the .bib files listed in CITE_BIB_FILES. For the IATEX output the formatting of
the reference in the text can be configured with LATEX_BIB_STYLE. For other output formats a fixed representation
is used. Note that using this command requires the bibtex tool to be present in the search path.

25.129 \endlink

This command ends a link that is started with the \link command.
See also

section \link.

25.130 \link <link-object>

The links that are automatically generated by Doxygen always have the name of the object they point to as link-text.
The \1ink command can be used to create a link to an object (a file, class, or member) with a user specified link-
text. The link command should end with an \endlink command. All text between the \ 1ink and \endlink commands
serves as text for a link to the <link-object> specified as the first argument of \1ink.

See also

Section autolink for more information on automatically generated links and valid link-objects.

25.131 \ref <name> ["(text)"]

Creates a reference to a named symbol, file, section, subsection, page or anchor.

For HTML documentation the reference command will generate a link to the section. For a section or subsection the
title of the section will be used as the text of the link. For an anchor the optional text between quotes will be used or
<name> if no text is specified.

In case <name> has spaces (for instance if it refers a file name containing spaces) you need to add double quotes
around the <name>, e.g. "my file.md".

For IATEX documentation the reference command will be the same unless the PDF_HYPERLINKS option has been
set to NO, in this case it generates the section title for sections or the text if <name> refers to an anchor followed
by a page number.

See also

Section \page for an example of the \ re f command.

25.132 \refitem <name>

Just like the \ref command, this command creates a reference to a named section, but this reference appears
in a list that is started by \secreflist and ends with \endsecreflist. An example of such a list can be seen
at the top of the page.

25.133 \secreflist

Starts an index list of item, created with \refitem that each link to a named section.

25.134 \endsecreflist

End an index list started with \secreflist.

Generated by Doxygen 1.13.1

204 Special Commands

25.135 \subpage <name> ["(text)"]

This command can be used to create a hierarchy of pages. The same structure can be made using the \defgroup
and \ingroup commands, but for pages the \ subpage command is often more convenient. The main page (see
\mainpage) is typically the root of hierarchy.

This command behaves similar as \ref in the sense that it creates a reference to a page labeled <name> with the
optional link text as specified in the second argument.

It differs from the \ref command in that it only works for pages, and creates a parent-child relation between pages,
where the child page (or sub page) is identified by label <name>.

See the \section and \subsection commands if you want to add structure without creating multiple pages.

Note

Each page can be the sub page of only one other page and no cyclic relations are allowed, i.e. the page
hierarchy must have a tree structure.

Here is an example:
/*! \mainpage A simple manual
Some general info.

This manual is divided in the following sections:
- \subpage intro
- \subpage advanced "Advanced usage"

*/

/+! \page intro Introduction
This page introduces the user to the topic.
Now you can proceed to the \ref advanced "advanced section".

*/

/+! \page advanced Advanced Usage
This page is for advanced users.
Make sure you have first read \ref intro "the introduction".

*/

25.136 \tableofcontents['{'[option[:level]][,option[:level]]x'}]

Creates a table of contents at the top of a page, listing all sections and subsections in the page. The option can
be HTML or LaTeX or XML or DocBook. When a 1evel is specified this means the maximum nesting level that
is shown. The value of 1evel should be in the range 1..6, values outside this range are considered to be 6. In
case no level is specified 1evel is set to 6 (show all) In case no opt ion. is specified \tableofcontents
acts as if just the opt ion HTML and XML was specified. In case of multiple \tableofcontents commands
in a page the opt ion(s) will be used additional to the already specified opt ion(s), but only the last 1evel of an
option is valid.

Warning

This command only works inside related page documentation and not in other documentation blocks and only
has effect in the specified output!

25.137 \section <section-name> (section title)

Creates a section with name <section-name>. The title of the section should be specified as the second argument
of the \sect ion command.

Warning

This command only works inside related page documentation and not in other documentation blocks!

Generated by Doxygen 1.13.1

25.138 \subsection <subsection-name> (subsection title) 205

See also

Section \page for an example of the \ sect ion command.

25.138 \subsection <subsection-name> (subsection title)

Creates a subsection with name <subsection-name>. The title of the subsection should be specified as the second
argument of the \subsection command.

Warning

This command only works inside a section of a related page documentation block and not in other documen-
tation blocks!

See also

Section \page for an example of the \ subsect ion command.

25.139 \subsubsection <subsubsection-name> (subsubsection title)

Creates a subsubsection with name <subsubsection-name>. The title of the subsubsection should be specified as
the second argument of the \ subsubsection command.

Warning

This command only works inside a subsection of a related page documentation block and not in other docu-
mentation blocks!

See also

Section \page for an example of the \section command and \subsection command.

25.140 \paragraph <paragraph-name> (paragraph title)

Creates a named paragraph with name <paragraph-name>. The title of the paragraph should be specified as the
second argument of the \paragraph command.

Warning

This command only works inside a subsubsection of a related page documentation block and not in other
documentation blocks!

25.141 \subparagraph <subparagraph-name> (subparagraph title)

Creates a named subparagraph with name <subparagraph-name>. The title of the subparagraph should be spec-
ified as the second argument of the \ subparagraph command.

Warning

This command only works inside a paragraph of a related page documentation block and not in other docu-
mentation blocks!

25.142 \subsubparagraph <subsubparagraph-name>
(subsubparagraph title)

Creates a named subsubparagraph with name <subsubparagraph-name>. The title of the subsubparagraph
should be specified as the second argument of the \ subsubparagraph command.

Warning

This command only works inside a subparagraph of a related page documentation block and not in other
documentation blocks!

Generated by Doxygen 1.13.1

206 Special Commands

Commands for displaying examples
25.143 \dontinclude['{lineno}'] <file-name>

This command can be used to parse a source file without actually verbatim including it in the documentation (as the
\include command does). This is useful if you want to divide the source file into smaller pieces and add documen-
tation between the pieces. Source files or directories can be specified using the EXAMPLE_PATH tag of Doxygen's
configuration file.

You can add the option 1ineno to enable line numbers for the included code if desired.

You can add the option st rip that will always hide any special comments from the included code, overruling the
STRIP_CODE_COMMENTS setting, or add the option nost rip to always show the special comments.

The class and member declarations and definitions inside the code fragment are 'remembered’ during the parsing
of the comment block that contained the \dont include command.

For line by line descriptions of source files, one or more lines of the example can be displayed using the \line, \skip,
\skipline, and \until commands. An internal pointer is used for these commands. The \dont include command
sets the pointer to the first line of the example.

Example:

/*! A test class. */

class Include_Test
{
public:
/// a member function
void example();

/*! \page pag_example

\dontinclude include_test.cpp

Our main function starts like this:
\skip main

\until {

First we create an object \c t of the Include_Test class.
\skipline Include_Test

Then we call the example member function
\line example

After that our little test routine ends.
\line }

R

*/
Where the example file include_test . cpp looks as follows:

void main ()

{
Include_Test t;
t.example () ;

}
See Include example for the corresponding IATEX documentation that is generated by Doxygen.

See also

sections \line, \skip, \skipline, \until, and \include.

25.144 \include['{'option'}'] <file-name>

This command can be used to include a source file as a block of code. The command takes the name of an include
file as an argument. Source files or directories can be specified using the EXAMPLE_PATH tag of Doxygen's
configuration file.

If <file-name> itself is not unique for the set of example files specified by the EXAMPLE_PATH tag, you can include
part of the absolute path to disambiguate it.

Using the \include command is equivalent to inserting the file into the documentation block and surrounding it
with \code and \endcode commands.

The main purpose of the \include command is to avoid code duplication in case of example blocks that consist
of multiple source and header files.

For a line by line description of a source files use the \dontinclude command in combination with the \line, \skip,
\skipline, and \until commands.

Alternatively, the \snippet command can be used to include only a fragment of a source file. For this to work the
fragment has to be marked.

Generated by Doxygen 1.13.1

25.145 \includelineno <file-name> 207

Note

Doxygen's special commands do not work inside blocks of code. It is allowed to nest C-style comments inside
a code block though.

The option can either be 1ineno, or doc, and additionally 1ocal can be specified.
* The option lineno can be used to enable line numbers for the included code if desired.
» The option doc can be used to treat the file as documentation rather than code.

» The option local can be used make Doxygen interpret the code as if it was in the class or namespace
in which the include command appears, rather than the global namespace.

» The option strip can be used to always hide any special comments from the included code, overruling
the STRIP_CODE_COMMENTS setting, and option nostrip can be used to always show the special
comments. These options have no effect in combination with the option doc.

When using option doc, there is also the option raise that can be specified to raise all sections found in the
referenced file by a certain amount. For example

\include{doc, raise=1} file.dox

will treat any level 1 \sectionfoundin file.dox asalevel 2 \subsection,andany level2 \subsection
into a level 3 \subsubsection, etc. Similarly, for Markdown a # section will be treated as a ## section.
Furthermore, there is the option pre £ix that can be used to add a prefix to each label of the included sections, so
that they remain unique. For example:

\include{doc,prefix=fn_} file.dox

will treat e.g. \section sl foundin file.dox as if it was specified as \section fn_sl.
Note

The included documentation should not have comment signs in it as they will appear in the documentation as
well.

See also

sections \example, \dontinclude, \verbatim, \includedoc, and \snippet.

25.145 \includelineno <file-name>

This command is obsolete and is still supported for backward compatibility reasons, it works the same way as
\include{lineno}

See also

sections \include{lineno}.

25.146 \includedoc]'{'option'}'] <file-name>

This command is obsolete and is still supported for backward compatibility reasons, it works the same way as
\include{doc}
The options are the same opt ions that can be used with the \ include when using there the option doc.

See also

section \include{doc}.

Generated by Doxygen 1.13.1

208 Special Commands

25.147 \line (pattern)

This command searches line by line through the example that was last included using \include or \dontinclude until
it finds a non-blank line. If that line contains the specified pattern, it is written to the output.

The internal pointer that is used to keep track of the current line in the example, is set to the start of the line following
the non-blank line that was found (or to the end of the example if no such line could be found).

See section \dontinclude for an example.

25.148 \skip (pattern)

This command searches line by line through the example that was last included using \include or \dontinclude until
it finds a line that contains the specified pattern.

The internal pointer that is used to keep track of the current line in the example, is set to the start of the line that
contains the specified pattern (or to the end of the example if the pattern could not be found).

See section \dontinclude for an example.

25.149 \skipline (pattern)

This command searches line by line through the example that was last included using \include or \dontinclude until
it finds a line that contains the specified pattern. It then writes the line to the output.

The internal pointer that is used to keep track of the current line in the example, is set to the start of the line following
the line that is written (or to the end of the example if the pattern could not be found).

Note:
The command:
\skipline pattern
is equivalent to:

\skip pattern
\line pattern

See section \dontinclude for an example.

25.150 \snippet['{'option'}'] <file-name> (block_id)

Where the \include command can be used to include a complete file as source code, this command can be used to
quote only a fragment of a source file. In case this is used as <file-name> the current file is taken as file to take
the snippet from.

For example, the putting the following command in the documentation, references a snippet in file example . cpp
residing in a subdirectory which should be pointed to by EXAMPLE_PATH.

\snippet snippets/example.cpp Adding a resource

The text following the file name is the unique identifier for the snippet. This is used to delimit the quoted code in the
relevant snippet file as shown in the following example that corresponds to the above \ snippet command:
QImage image (64, 64, QImage::Format_RGB32);
image.fill (gRgb (255, 160, 128));

//! [Adding a resource]
document->addResource (QTextDocument : : ImageResource,
QUrl ("mydata://image.png"), QVariant (image));
//! [Adding a resource]

Note that the lines containing the block markers will not be included, so the output will be:

document->addResource (QTextDocument : : ImageResource,
QUrl ("mydata://image.png"), QVariant (image));

Note also that the [block_id] markers should appear exactly twice in the source file.
The option can eitherbe 1ineno, trimleft or doc, and additionally 1ocal can be specified.

* The option lineno can be used to enable line numbers for the included code if desired.

Generated by Doxygen 1.13.1

25.151 \snippetlineno <file-name> (block_id) 209

* The option trimleft can be used to remove the common spacing in front of all lines (also taking in
account the setting of the TAB_SIZE tag).

» The option doc can be used to treat the file as documentation rather than code.

» The option local can be used make Doxygen interpret the code as if it was in the class or namespace
in which the include command appears, rather than the global namespace.

» The option strip can be used to always hide any special comments from the included code, overruling
the STRIP_CODE_COMMENTS setting, and option nostrip can be used to always show the special
comments. These options have no effect in combination with the option doc.

When using option doc, there is also the option raise that can be specified to raise all sections found in the
referenced file by a certain amount. For example

\snippet{doc, raise=1} file.dox XXX

will treat any level 1 \sect ion found the snippet as a level 2 \ subsection, and any level 2 \subsection
into a level 3 \subsubsection, etc. Similarly, for Markdown a # section will be treated as a ## section.
Furthermore, there is the option pre fix that can be used to add a prefix to each label of the included sections, so
that they remain unique. For example:

\include{doc,prefix=fn_} file.dox
will treat e.g. \section sl foundin file.dox as if it was specified as \section fn_sl.

Note

The included documentation should not have comment signs in it as they will appear in the documentation as
well.

see section \dontinclude for an alternative way to include fragments of a source file that does not require markers.

25.151 \snippetlineno <file-name> (block_id)

This command is obsolete and is still supported for backward compatibility reasons, it works the same way as
\snippet{lineno}

See also

sections \snippet{lineno}

25.152 \snippetdoc['{'option'}'] <file-name> (block_id)

This command is obsolete and is still supported for backward compatibility reasons, it works the same way as
\snippet{doc}
The options are the same opt ions that can be used with the \ snippet when using there the option doc.

See also

section \snippet{doc} and \include{doc}.

25.153 \until (pattern)

This command writes all lines of the example that was last included using \include or \dontinclude to the output, until
it finds a line containing the specified pattern. The line containing the pattern will be written as well.

The internal pointer that is used to keep track of the current line in the example, is set to the start of the line following
last written line (or to the end of the example if the pattern could not be found).

See section \dontinclude for an example.

Generated by Doxygen 1.13.1

210 Special Commands

25.154 \verbinclude <file-name>

This command includes the contents of the file <file-name> verbatim in the documentation. The command is equiv-
alent to pasting the contents of the file in the documentation and placing \verbatim and \endverbatim commands
around it.

Files or directories that Doxygen should look for can be specified using the EXAMPLE_PATH tag of Doxygen's
configuration file.

25.155 \htmlinclude['[block]'] <file-name>

This command includes the contents of the file <file-name> as is in the HTML documentation and tagged with
<htmlonly> in the generated XML output. The command is equivalent to pasting the contents of the file in the
documentation and placing \htmlonly and \endhtmlonly commands around it.

Normally the contents of the file indicated by \htmlinclude is inserted as-is. When you want to insert a HTML
fragment that has block scope like a table or list which should appear outside <p>..</p>, this can lead to invalid
HTML. You can use \htmlinclude [block] to make Doxygen end the current paragraph and restart after the
file is included.

Files or directories that Doxygen should look for can be specified using the EXAMPLE_PATH tag of Doxygen's
configuration file.

See also

section \htmlonly, \latexinclude, \rtfinclude, \maninclude, \docbookinclude and \xmlinclude.

25.156 \latexinclude <file-name>

This command includes the contents of the file <file-name> as is in the IATEX documentation and tagged with
<latexonly> inthe generated XML output. The command is equivalent to pasting the contents of the file in the
documentation and placing \latexonly and \endlatexonly commands around it.

Files or directories that Doxygen should look for can be specified using the EXAMPLE_PATH tag of Doxygen's
configuration file.

See also

section \latexonly, \htmlinclude, \rtfinclude, \maninclude, \docbookinclude and \xmlinclude.

25.157 \rtfinclude <file-name>

This command includes the contents of the file <file-name> as is in the RTF documentation and tagged with
<rtfonly> in the generated XML output. The command is equivalent to pasting the contents of the file in the
documentation and placing \rtfonly and \endrtfonly commands around it.

Files or directories that Doxygen should look for can be specified using the EXAMPLE_PATH tag of Doxygen's
configuration file.

See also

section \rtfonly, \htmlinclude, \latexinclude, \maninclude, \docbookinclude and \xmlinclude.

25.158 \maninclude <file-name>

This command includes the contents of the file <file-name> as is in the MAN documentation and tagged with
<manonly> in the generated XML output. The command is equivalent to pasting the contents of the file in the
documentation and placing \manonly and \endmanonly commands around it.

Files or directories that Doxygen should look for can be specified using the EXAMPLE_PATH tag of Doxygen's
configuration file.

See also

section \manonly, \htmlinclude, \latexinclude, \rtfinclude, \docbookinclude and \xmlinclude.

Generated by Doxygen 1.13.1

25.159 \docbookinclude <file-name> 211

25.159 \docbookinclude <file-name>

This command includes the contents of the file <file-name> as is in the DocBook documentation and tagged with
<docbookonly> in the generated XML output. The command is equivalent to pasting the contents of the file in
the documentation and placing \docbookonly and \enddocbookonly commands around it.

Files or directories that Doxygen should look for can be specified using the EXAMPLE_PATH tag of Doxygen's
configuration file.

See also

section \docbookonly, \htmlinclude, \latexinclude, \rtfinclude, \maninclude and \xmlinclude.

25.160 \xmlinclude <file-name>

This command includes contents of the file <file-name> as is in the XML documentation. The command is equiva-
lent to pasting the contents of the file in the documentation and placing \xmlonly and \endxmlonly commands around
it.

Files or directories that Doxygen should look for can be specified using the EXAMPLE_PATH tag of Doxygen's
configuration file.

See also

section \xmlonly, \htmlinclude, \latexinclude, \rtfinclude, \maninclude and \docbookinclude.

Commands for visual enhancements

25.161 \a <word>

Displays the argument <word> in italics. Use this command to emphasize words. Use this command to refer to
member arguments in the running text.

Example:

. the \a x and \a y coordinates are used to ...

This will result in the following text:

... the xand y coordinates are used to ...

Equivalent to \e and \em. To emphasize multiple words use multiple words.

25.162 \arg { item-description }

This command has one argument that continues until the first blank line or until another \arg is encountered. The
command can be used to generate a simple, not nested list of arguments. Each argument should start with a \arg
command.

Example:
Typing:
\arg \c AlignLeft left alignment.
\arg \c AlignCenter center alignment.

\arg \c AlignRight right alignment

No other types of alignment are supported.

will result in the following text:

*+ AlignLeft left alignment.

Generated by Doxygen 1.13.1

212 Special Commands

+ AlignCenter center alignment.
* AlignRight right alignment

No other types of alignment are supported.

Note:

For nested lists, HTML commands should be used.

Equivalent to \li

25.163 \b <word>

Displays the argument <word> using a bold font. Equivalent to word. To put multiple words in bold use
multiple words.

25.164 \c <word>

Displays the argument <word> using a typewriter font. Use this to refer to a word of code. Equivalent to
<tt>word</tt>.

Example:

Typing:

. This function returns \c void and not \c int ...

will result in the following text:

... This function returns void and not int ...

Equivalent to \p. To have multiple words in typewriter font use <tt>multiple words</tt>.

25.165 \code['{'<word>'}"]

Starts a block of code. A code block is treated differently from ordinary text. It is interpreted as source code.
The names of classes and members and other documented entities are automatically replaced by links to the
documentation.

By default the language that is assumed for syntax highlighting is based on the location where the \ code block
was found. If this part of a Python file for instance, the syntax highlight will be done according to the Python syntax.
If it is unclear from the context which language is meant (for instance the comment is in a . txt or .markdown
file) then you can also explicitly indicate the language, by putting the file extension typically that Doxygen associated
with the language in curly brackets after the code block. Here is an example:

\code{.py}

class Python:
pass

\endcode

\code{.cpp}
class Cpp {};
\endcode

If the contents of the code block are in a language that Doxygen cannot parse, Doxygen will just show the output
as-is. You can make this explicit using .unparsed, or by giving some other extension that Doxygen doesn't support,

e.g.

\code{ .unparsed}
Show this as-is please
\endcode

\code{.sh}
echo "This is a shell script"
\endcode

Generated by Doxygen 1.13.1

25.166 \copydoc <link-object> 213

See also

section \endcode and section \verbatim.

25.166 \copydoc <link-object>

Copies a documentation block from the object specified by <link-object> and pastes it at the location of the com-
mand. This command can be useful to avoid cases where a documentation block would otherwise have to be
duplicated or it can be used to extend the documentation of an inherited member.

The link object can point to a member (of a class, file or group), a class, a namespace, a group, a page, or a
file (checked in that order). Note that if the object pointed to is a member (function, variable, typedef, etc), the
compound (class, file, or group) containing it should also be documented for the copying to work.

To copy the documentation for a member of a class one can, for instance, put the following in the documentation:

/*! @copydoc MyClass::myfunction ()
* More documentation.
*/
if the member is overloaded, you should specify the argument types explicitly (without spaces!), like in the following:

//! @copydoc MyClass::myfunction (typel, type2)

Qualified names are only needed if the context in which the documentation block is found requires them.

The \ copydoc command can be used recursively, but cycles in the \ copydoc relation will be broken and flagged
as an error.

Note that \copydoc foo () is roughly equivalent to doing:

\brief \copybrief foo()
\details \copydetails foo /()

See \copybrief and \copydetails for copying only the brief or detailed part of the comment block.

25.167 \copybrief <link-object>

Works in a similar way as \copydoc but will only copy the brief description, not the detailed documentation.

25.168 \copydetails <link-object>

Works in a similar way as \copydoc but will only copy the detailed documentation, not the brief description.

25.169 \docbookonly

Starts a block of text that only will be verbatim included in the generated DocBook documentation and tagged with
<docbookonly> in the generated XML output. The block ends with a \enddocbookonly command.

See also

section \manonly, \latexonly, \rtfonly, \xmlonly, \htmlonly and \docbookinclude.

25.170 \dot ["caption"] [<sizeindication>=<size>]

Starts a text fragment which should contain a valid description of a dot graph. The text fragment ends with \enddot.
Doxygen will pass the text on to dot and include the resulting image (and image map) into the output.

The first argument is optional and can be used to specify the caption that is displayed below the image. This
argument has to be specified between quotes even if it does not contain any spaces. The quotes are stripped
before the caption is displayed.

The second argument is also optional and can be used to specify the width or height of the image. For a description
of the possibilities see the paragraph Size indication with the \image command.

The nodes of a graph can be made clickable by using the URL attribute. By using the command \ref inside the URL
value you can conveniently link to an item inside Doxygen. Here is an example:

Generated by Doxygen 1.13.1

214 Special Commands

Note

usage of this command requires that HAVE_DOT is set to YES

Doxygen creates a temporary file that is automatically removed unless the DOT_CLEANUP tag is set to NO.

/x! class B */
class B {};

/x! class C */
class C {};

/*! \mainpage
*

Note that the classes in the above graph are clickable
(in the HTML output) .

* Class relations expressed via an inline dot graph:
x \dot

* digraph example {

* node [shape=record, fontname=Helvetica, fontsize=10]
* b [label="class B" URL="\ref B"];

* c [label="class C" URL="\ref C"];

* b -> ¢ [arrowhead="open", style="dashed"];

*)

+ \enddot

*

*

*

25.171 \emoji "name"

This command will produce an emoji character given its name.

The supported names are the ones also supported by GitHub and listed here https://gist.github.«

com/rxaviers/7360908

You can use the name with or without colons, i.e. \emoji smile is the same as writing \emoji :smile«
When an emoji is not supported the name with by places in the text with in between colons, i.e. \emoji

unsupported will produce : unsupported: inthe output. Doxygen will also give a warning message.

See also the emoji support page for details.

25.172 \msc ["caption"] [<sizeindication>=<size>]

Starts a text fragment which should contain a valid description of a message sequence chart. See https«
://www.mcternan.me.uk/mscgen/ for examples. The text fragment ends with \endmsc.

The first argument is optional and can be used to specify the caption that is displayed below the image. This
argument has to be specified between quotes even if it does not contain any spaces. The quotes are stripped
before the caption is displayed.

The second argument is also optional and can be used to specify the width or height of the image. For a description
of the possibilities see the paragraph Size indication with the \image command.

Note

The text fragment should only include the part of the message sequence chart that is within the msc { ...}
block (this is different from \mscfile).

mscgen is how built in into Doxygen

Doxygen creates a temporary file that is automatically removed unless the DOT_CLEANUP tag is set to NO.

Here is an example of the use of the \msc command.

/+% Sender class. Can be used to send a command to the server.
« The receiver will acknowledge the command by calling Ack ().

* \msc

* Sender, Receiver;

* Sender->Receiver [label="Command()", URL="\ref Receiver: :Command () "];
* Sender<-Receiver [label="Ack ()", URL:"\ref Ack ()", ID="1"];

+ \endmsc

*/

class Sender
{
public:
/%% Acknowledgment from server =/
void Ack (bool ok);
i

/%% Receiver class. Can be used to receive and execute commands.
* After execution of a command, the receiver will send an acknowledgment

Generated by Doxygen 1.13.1

https://gist.github.com/rxaviers/7360908
https://gist.github.com/rxaviers/7360908
https://www.mcternan.me.uk/mscgen/
https://www.mcternan.me.uk/mscgen/

25.173 \startuml ['{'option[,option]'}'] ['caption”] [<sizeindication>=<size>] 215

+ \msc

* Receiver, Sender;

* Receiver<-Sender [label="Command()", URL:"\ref Command () "];

* Receiver->Sender [label="Ack()", URL:"\ref Sender::Ack ()", ID="1"];
* \endmsc

*/
class Receiver
{
public:
/+* Executable a command on the server =/
void Command (int commandId) ;
Vi

See also

section \mscfile.

25.173 \startuml ['{'option[,option]'}'] ['caption]
[<sizeindication>=<size>]

Starts a text fragment which should contain a valid description of a PlantUML diagram. See https«
://plantuml.com/ for examples. The text fragment ends with \enduml.

Note

You need to install Java and the PlantUML's jar file, if you want to use this command. When using PlantUML
in IATEX you have to download some more jar files, for details see the PlantUML documentation. This also
is valid for the <engine>s latex and math. The location of the PlantUML file should be specified using
PLANTUML_JAR_PATH. The other jar files should also reside in this directory.

The use of the <engine> ditaa is not possible in IKTEX as PlantUML only supports the png format and
Doxygen requires, temporary, eps output.

Not all diagrams can be created with the PlantUML @startuml command but need another PlantUML
@start... command. This will look like @start<engine> where currently supported are the follow-
ing <engine>s: uml, bpm, wire, dot, ditaa, salt, math, latex, gantt, mindmap, wbs, yaml,
creole, json, flow, board, git, hcl, regex, ebnf, files, chen and chronology. By default the
<engine>is uml. The <engine> can be specified as an option. Also the file to write the resulting image to
can be specified by means of an option, see the description of the first (optional) argument for details. Of course
only one <engine> can be specified and also the filename can only be specified once.

The first argument is optional and is for compatibility with running PlantUML as a preprocessing step before running
Doxygen, you can also add the name of the image file after \startuml and inside curly brackets as option, i.e.

@startuml {myimage.png} "Image Caption" width=5cm
Alice -> Bob : Hello
@enduml

When the name of the image is specified, Doxygen will generate an image with that name. Without the name
Doxygen will choose a name automatically.

The second argument is optional and can be used to specify the caption that is displayed below the image. This
argument has to be specified between quotes even if it does not contain any spaces. The quotes are stripped before
the caption is displayed.

The third argument is also optional and can be used to specify the width or height of the image. For a description of
the possibilities see the paragraph Size indication with the \image command.

Note

Doxygen does not support the Plantuml commands like @start json, by design, directly but the support
can be accomplished, by the user, by adding to the Doxygen settings file:

ALIASES += startjson=@startuml{json}
ALIASES += endjson=@enduml

Doxygen creates a temporary file that is automatically removed unless the DOT_CLEANUP tag is set to NO.

Generated by Doxygen 1.13.1

https://plantuml.com/
https://plantuml.com/

216 Special Commands

Here is an example of the use of the \startuml command.

/+% Sender class. Can be used to send a command to the server.
* The receiver will acknowledge the command by calling Ack().
x \startuml

* Sender->Receiver : Command ()
* Sender<--Receiver : Ack()

x \enduml

*/

class Sender
{
public:
/** Acknowledgment from server x/
void Ack (bool ok);
Vi

/%% Receiver class. Can be used to receive and execute commands.
* After execution of a command, the receiver will send an acknowledgment
x \startuml

* Receiver<-Sender : Command ()
* Receiver—-->Sender : Ack(
* \enduml

*/
class Receiver
{
public:
/** Executable a command on the server =*/
void Command (int commandId) ;
¥

25.174 \dotfile <file> ["caption"] [<sizeindication>=<size>]

Inserts an image generated by dot from <file> into the documentation.

The first argument specifies the file name of the image. Doxygen will look for files in the paths (or files) that you
specified after the DOTFILE_DIRS tag. If the dot file is found it will be used as an input file to the dot tool. The
resulting image will be put into the correct output directory. If the dot file name contains spaces you'll have to put
quotes ("...") around it.

The second argument is optional and can be used to specify the caption that is displayed below the image. This
argument has to be specified between quotes even if it does not contain any spaces. The quotes are stripped before
the caption is displayed.

The third argument is also optional and can be used to specify the width or height of the image. For a description of
the possibilities see the paragraph Size indication with the \image command.

Note

usage of this command requires that HAVE_DOT is set to YES

See also

section \dot.

25.175 \mscfile <file> ["caption"] [<sizeindication>=<size>]

Inserts an image generated by mscgen from <file> into the documentation. See https://www.«
mcternan.me.uk/mscgen/ for examples.

The first argument specifies the file name of the image. Doxygen will look for files in the paths (or files) that you
specified after the MSCFILE_DIRS tag. If the msc file is found it will be used as an input file to the built in mscgen
tool. The resulting image will be put into the correct output directory. If the msc file name contains spaces you'll
have to put quotes ("...") around it.

The second argument is optional and can be used to specify the caption that is displayed below the image. This
argument has to be specified between quotes even if it does not contain any spaces. The quotes are stripped before
the caption is displayed.

The third argument is also optional and can be used to specify the width or height of the image. For a description of
the possibilities see the paragraph Size indication with the \image command.

Note

The text fragment should include the part message of the sequence chart as well as the startingmsc { and
ending } (this is different from \msc).

Generated by Doxygen 1.13.1

https://www.mcternan.me.uk/mscgen/
https://www.mcternan.me.uk/mscgen/

25.176 \diafile <file> ["caption"] [<sizeindication>=<size>] 217

See also

section \msc.

25.176 \diafile <file> ["caption"] [<sizeindication>=<size>]

Inserts an image made in dia from <file> into the documentation.

The first argument specifies the file name of the image. Doxygen will look for files in the paths (or files) that you
specified after the DIAFILE_DIRS tag. If the dia file is found it will be used as an input file dia. The resulting image
will be put into the correct output directory. If the dia file name contains spaces you'll have to put quotes ("...")
around it.

The second argument is optional and can be used to specify the caption that is displayed below the image. This
argument has to be specified between quotes even if it does not contain any spaces. The quotes are stripped before
the caption is displayed.

The third argument is also optional and can be used to specify the width or height of the image. For a description of
the possibilities see the paragraph Size indication with the \image command.

25.177 \doxyconfig <config_option>

Displays the value of the configuration option <config_option> as used in Doxygen's configuration file that is
in use when this command is processed.

Example:
When creating this manual the following:

. Project name = \doxyconfig PROJECT_NAME ...

gives:
... Project name = Manual ...

25.178 \e <word>

Displays the argument <word> in italics. Use this command to emphasize words.

Example:

Typing:

. this is a \e really good example ...
will result in the following text:
... this is a really good example ...

Equivalent to \a and \em. To emphasize multiple words use multiple words.

25.179 \em <word>

Displays the argument <word> in italics. Use this command to emphasize words.

Example:

Typing:

. this is a \em really good example ...
will result in the following text:
... this is a really good example ...

Equivalent to \a and \e. To emphasize multiple words use multiple words.

Generated by Doxygen 1.13.1

218 Special Commands

25.180 \endcode

Ends a block of code.
See also

section \code

25.181 \enddocbookonly

Ends a block of text that was started with a \docbookonly command.
See also

section \docbookonly.

25.182 \enddot

Ends a block that was started with \dot.

25.183 \endmsc

Ends a block that was started with \msc.

25.184 \enduml

Ends a block that was started with \startuml.

25.185 \plantumlfile <file> ["caption"] [<sizeindication>=<size>]

Inserts an image made in PlantUml from <file> into the documentation.

The first argument specifies the file name of the image. Doxygen will look for files in the paths (or files) that you
specified after the PLANTUMLFILE_DIRS tag. If the plantuml file is found it will be used as an input file for the
plantuml program. The resulting image will be put into the correct output directory. If the plantuml file name contains
spaces you'll have to put quotes ("...") around it.

The second argument is optional and can be used to specify the caption that is displayed below the image. This
argument has to be specified between quotes even if it does not contain any spaces. The quotes are stripped before
the caption is displayed.

The third argument is also optional and can be used to specify the width or height of the image. For a description of
the possibilities see the paragraph Size indication with the \image command.

25.186 \endhtmlonly

Ends a block of text that was started with a \htmlonly command.
See also

section \htmlonly.

25.187 \endlatexonly

Ends a block of text that was started with a \latexonly command.
See also

section \latexonly.

Generated by Doxygen 1.13.1

25.188 \endmanonly

219

25.188 \endmanonly

Ends a block of text that was started with a \manonly command.

See also

section \manonly.

25.189 \endrtfonly

Ends a block of text that was started with a \rtfonly command.
See also

section \rtfonly.

25.190 \endverbatim

Ends a block of text that was started with a \verbatim command.

See also

section \verbatim.

25.191 \endxmlonly

Ends a block of text that was started with a \xmlonly command.

See also

section \xmlonly.

25.192 \f$

Marks the start and end of an in-text formula.
See also

section formulas for an example.

25.193 \f(

Marks the start of an in-text formula, but contrary to \f$ it will not explicitly open the math-mode in IATEX.

See also

section \f) and section formulas.

25.194 \f)

Marks the end of an in-text formula started with \f(.

See also

section \f(and section formulas.

Generated by Doxygen 1.13.1

220

Special Commands

25.195 \f[

Marks the start of a long formula that is displayed centered on a separate line.

See also

section \f] and section formulas.

25.196 \f]

Marks the end of a long formula that is displayed centered on a separate line.

See also

section \f[and section formulas.

25.197 \f{environment}{

Marks the start of a formula that is in a specific environment.

Note

The second { is optional and is only to help editors (such as Vim) to do proper syntax highlighting by making

the number of opening and closing braces the same.

See also

section \f} and section formulas.

25.198 \f}

Marks the end of a formula that is in a specific environment.
See also

section \f{ and section formulas.

25.199 \htmlonly['[block]']

Starts a block of text that only will be verbatim included in the generated HTML documentation and tagged with
<htmlonly> in the generated XML output. The block ends with a \endhtmlonly command.
This command can be used to include HTML code that is too complex for Doxygen (i.e. applets, java-scripts, and

HTML tags that require specific attributes).

Normally the contents between \htmlonly and \endhtmlonly is inserted as-is. When you want to insert a HTML
fragment that has block scope like a table or list which should appear outside <p>..</p>, this can lead to in-
valid HTML. You can use \htmlonly [block] to make Doxygen end the current paragraph and restart it after

\endhtmlonly.

Note

environment variables (like $(HOME)) are resolved inside a HTML-only block.

See also

section \manonly, \latexonly, \rtfonly, \xmlonly, \docbookonly, and \htmlinclude.

Generated by Doxygen 1.13.1

25.200 \image['{'option[,option]'}'] <format> <file> ["caption"] [<sizeindication>=<size>] 221

25.200 \image['{'option[,option]'}'] <format> <file> ["caption"]
[<sizeindication>=<size>]

Inserts an image into the documentation. This command is format specific, so if you want to insert an image for
more than one format you'll have to repeat this command for each format.

The first argument specifies the output format in which the image should be embedded. Currently, the following
values are supported: html, latex, docbook, rt f and xml.

The second argument specifies the file name of the image. Doxygen will look for files in the paths (or files) that you
specified after the IMAGE_PATH tag. If the image is found it will be copied to the correct output directory. If the
image name contains spaces you'll have to put quotes ("...") around the name. You can also specify an absolute
URL instead of a file name, but then Doxygen does not copy the image nor check its existence.

The third argument is optional and can be used to specify the caption that is displayed below the image. This
argument has to be specified on a single line and between quotes even if it does not contain any spaces. The
quotes are stripped before the caption is displayed.

The fourth argument is also optional and can be used to specify the width or height of the image. This can be useful
for IATEX or DocBook output (i.e. format=1atex or format=docbook).

Size indication

The sizeindication can specify the width or height to be used (or a combination). The size specifier in
IATEX (for example 10cm or 4in or a symbolic width like \textwidth).

Currently only the options inline and anchor are supported. In case the option inline is specified the image
is placed "in the line", when a caption is present it is shown in HTML as tooltip (ignored for the other formats). For
the anchor option the syntax is: anchor: <anchorId>.

Here is example of a comment block:

/! Here is a snapshot of my new application:
*+ \image html application.jpg
* \image latex application.eps "My application" width=10cm
*/
And this is an example of how the relevant part of the configuration file may look:

IMAGE_PATH = my_image_dir

Warning

The image format for HTML is limited to what your browser supports.
For IATEX, the image format must be supported by the IKTEX \includegraphics command i.e. Encapsu-
lated PostScript (eps), Portable network graphics (png), Joint photographic experts group (jpg / jpeg).

Doxygen does not check if the image is in the correct format. So you have to make sure this is the
case!

25.201 \latexonly

Starts a block of text that only will be verbatim included in the generated IATEX documentation and tagged with
<latexonly> inthe generated XML output. The block ends with a \endlatexonly command.

This command can be used to include IATEX code that is too complex for Doxygen (i.e. images, formulas, special
characters). You can use the \htmlonly and \endhtmlonly pair to provide a proper HTML alternative.

Note: environment variables (like $(HOME)) are resolved inside a IATEX-only block.

See also

sections \rtfonly, \xmlonly, \manonly, \htmlonly, \docbookonly, and \latexinclude.

Generated by Doxygen 1.13.1

222 Special Commands

25.202 \manonly

Starts a block of text that only will be verbatim included in the generated MAN documentation and tagged with
<manonly> in the generated XML output. The block ends with a \endmanonly command.

This command can be used to include groff code directly into MAN pages. You can use the \htmlonly and
\endhtmlonly and \latexonly and \endlatexonly pairs to provide proper HTML and IATEX alternatives.

See also

sections \htmlonly, \xmlonly, \rtfonly, \latexonly, \docbookonly and \maninclude.

25.203 \li { item-description }

This command has one argument that continues until the first blank line or until another \ 11 is encountered. The
command can be used to generate a simple, not nested list of arguments. Each argument should start with a \ 11
command.

Example:
Typing:
\1i \c AlignLeft left alignment.
\1i \c AlignCenter center alignment.

\1i \c AlignRight right alignment

No other types of alignment are supported.

will result in the following text:

* AlignLeft left alignment.
* AlignCenter center alignment.

*+ AlignRight right alignment

No other types of alignment are supported.

Note:

For nested lists, HTML commands should be used.

Equivalent to \arg

25.204 \n

Forces a new line. Equivalent to
 and inspired by the print £ function.

25.205 \p <word>

Displays the parameter <word> using a typewriter font. You can use this command to refer to member function
parameters in the running text.

Example:

. the \p x and \p y coordinates are used to ...

This will result in the following text:

... the x and y coordinates are used to ...

Equivalent to \c. To have multiple words in typewriter font use <tt>multiple words</tt>.

Generated by Doxygen 1.13.1

25.206 \rtfonly 223

25.206 \rtfonly

Starts a block of text that only will be verbatim included in the generated RTF documentation and tagged with
<rtfonly> inthe generated XML output. The block ends with a \endrtfonly command.

This command can be used to include RTF code that is too complex for Doxygen.

Note: environment variables (like $(HOME)) are resolved inside a RTF-only block.

See also

sections \manonly, \xmlonly, \latexonly, \htmlonly, \docbookonly and \rtfinclude.

25.207 \verbatim

Starts a block of text that will be verbatim included in the documentation. The block should end with a \endverbatim
command. All commands are disabled in a verbatim block.

Warning
Make sure you include a \endverbatim command for each \verbatim command or the parser will get

confused!

See also

sections \code, \endverbatim and \verbinclude.

25.208 \xmlonly

Starts a block of text that only will be verbatim included in the generated XML output. The block ends with a
\endxmlonly command.
This command can be used to include custom XML tags.

See also

sections \manonly, \rtfonly, \latexonly, \htmlonly, and \docbookonly.

25.209 \\

This command writes a backslash character (\) to the output. The backslash has to be escaped in some cases
because Doxygen uses it to detect commands.

25.210 \@

This command writes an at-sign (@) to the output. The at-sign has to be escaped in some cases because Doxygen
uses it to detect Javadoc commands.

25.211 \~[Languageld]

This command enables/disables a language specific filter. This can be used to put documentation for different
language into one comment block and use the OUTPUT_LANGUAGE tag to filter out only a specific language. Use
\~language_1id to enable output for a specific language only and \ ~ to enable output for all languages (this is
also the default mode).

Example:

/+! \~english This is English \~dutch Dit is Nederlands \~german Dies ist
Deutsch. \~ output for all languages.
x/

Generated by Doxygen 1.13.1

224 Special Commands

25.212 \&

This command writes the & character to the output. This character has to be escaped because it has a special
meaning in HTML.

25.213 \$

This command writes the $ character to the output. This character has to be escaped in some cases, because it is
used to expand environment variables.

25.214 #

This command writes the # character to the output. This character has to be escaped in some cases, because it is
used to refer to documented entities

25.215 \<

This command writes the < character to the output. This character has to be escaped because it has a special
meaning in HTML.

25.216 \>

This command writes the > character to the output. This character has to be escaped because it has a special
meaning in HTML.

25.217 \%

This command writes the % character to the output. This character has to be escaped in some cases, because it is
used to prevent auto-linking to a word that is also a documented class or struct.

25.218 \"

This command writes the " character to the output. This character has to be escaped in some cases, because it is
used in pairs to indicate an unformatted text fragment.

25.219 \

This command writes a dot (.) to the output. This can be useful to prevent ending a brief description when
JAVADOC_AUTOBRIEF or QT_AUTOBRIEF is enabled or to prevent starting a numbered list when the dot follows
a number at the start of a line

25.220 \?

This command writes a question mark (?) to the output. This can be useful to prevent ending a brief description
when JAVADOC AUTOBRIEF or QT AUTOBRIEF is enabled.

25.221 \!

This command writes a exclamation mark (!) to the output. This can be useful to prevent ending a brief description
when JAVADOC AUTOBRIEF or QT AUTOBRIEF is enabled.

25.222 \=

This command writes an equal sign (=) to the output. This character sequence has to be escaped in some cases,
because it is used in Markdown header processing.

Generated by Doxygen 1.13.1

25.223\:: 225

25.223 \:

This command writes a double colon (: :) to the output. This character sequence has to be escaped in some cases,
o : "

25.224 \|

This command writes a pipe symbol (]) to the output. This character has to be escaped in some cases, because it
is used for Markdown tables.

25.225 \--

This command writes two dashes (--) to the output. This allows writing two consecutive dashes to the output instead
of one n-dash character (-).

25.226 \---

This command writes three dashes (---) to the output. This allows writing three consecutive dashes to the output
instead of one m-dash character (—).

Generated by Doxygen 1.13.1

226 Special Commands

Generated by Doxygen 1.13.1

Chapter 26

HTML Commands

26.1 HTML tag commands

Here is a list of all HTML commands that may be used inside the documentation. Note that although these HTML
tags are translated to the proper commands for output formats other than HTML, all attributes of a HTML tag are
passed on to the HTML output only (the HREF and NAME attributes for the A tag are the only exception).

HTML Command Description

 Starts a hyperlink (if supported by the output format).

 Starts a named anchor (if supported by the output format).
 Starts a named anchor (if supported by the output format).
 Ends a link or anchor

/ Starts and ends a piece of text displayed in a bold font.

<BLOCKQUOTE> / </BLOCKQUOTE>

Starts and ends a quotation block.

Forces a line break.

<CENTER>/ </CENTER>

Starts and ends a section of centered text.

<CAPTION>/</CAPTION>

Starts and ends a caption. Use within a table only.

<CITE>/</CITE>

Starts and ends a section of text displayed in a font specific for
citations.

<CODE>/ </CODE>

Starts and ends a piece of text displayed in a typewriter font. Note
that only for C# code, this command is equivalent to \code (see
<code>).

<DD>/</DD>

Starts and ends an item description.

/

Starts and ends a section of deleted text, typically shown as strike
through text.

<DETAILS>/</DETAILS>

Starts and ends a section of detailed text that the user can open
and close (in HTML output))

<DFN>/ </DFN>

Starts and ends a piece of text displayed in a typewriter font.

<DIV>/</DIV>

Starts and ends a section with a specific style (HTML only)

<DL>/</DL>

Starts and ends a description list.

<DT>/</DT>

Starts and ends an item title.

 /

Starts and ends a piece of text displayed in an italic font.

<HR>

Writes a horizontal ruler.

<H1>/</H1>

Starts and ends an unnumbered section.

<H2>/</H2>

Starts and ends an unnumbered subsection.

<H3>/</H3>

Starts and ends an unnumbered subsubsection.

<H4>/</H4>

Starts and ends an unnumbered subsubsection.

<H5>/</H5>

Starts and ends an unnumbered subsubsection.

<H6>/</H6>

Starts and ends an unnumbered subsubsection.

<I>/</I>

Starts and ends a piece of text displayed in an italic font.

Generated by Doxygen 1.13.1

228 HTML Commands
HTML Command Description
 This command is written with its attributes to the HTML output only.

The SRC attribute is mandatory.

<INS>/</INS>

Starts and ends a section of inserted text, typically shown as un-
derlined text.

<KBD>/ </KBD>

Starts and ends a piece of text displayed in a typewriter font.

/

Starts and ends a new list item.

/</0L>

Starts and ends a numbered item list.

<P>/</P> Starts and ends a new paragraph.
<PRE>/ </PRE> Starts and ends a preformatted fragment.
<S>/</S> Starts and ends a section of strike through text.

<SMALL>/</SMALL>

Starts and ends a section of text displayed in a smaller font.

 /

Starts and ends an inline text fragment with a specific style (HTML
only)

<STRIKE>/</STRIKE>

Starts and ends a section of strike through text.

 /

Starts and ends a section of bold text.

_/

Starts and ends a piece of text displayed in subscript.

[/]
<TABLE>/ </TABLE>
<TBODY>/ </TBODY>
<TD>/</TD>
<TH>/</TH>
<THEAD>/ </THEAD>
<TFOOT>/</TFOOT>
<TR>/ </TR> Starts and ends a new table row.

<TT>/</TT> Starts and ends a piece of text displayed in a typewriter font.
<U>/</U> Starts and ends a section of underlined text.
/ Starts and ends an unnumbered item list.

<VAR>/ </VAR> Starts and ends a piece of text displayed in an italic font.

Starts and ends a piece of text displayed in superscript.

Starts and ends a table.

Starts and ends a new table body, currently ignored by Doxygen.
Starts and ends a new table data element.

Starts and ends a new table header.

Starts and ends a new table header, currently ignored by Doxygen.

Starts and ends a new table footer, currently ignored by Doxygen.

Finally we have the HTML style comments.

» When using the, Doxygen, special HTML style comments, i.e. <!--! ——>, it is not seen as

comment but as if the . . . partis just in the documentation. This is useful to specify Doxygen commands
inside a markdown file like:
<!--1 \page pgl The page -—>

which will be ignored by regular Markdown processors, but Doxygen will interpret this as if there was written:

\page pgl The page
 To put invisible comments inside comment blocks, the normal HTML style comments can be used:
/x! <!=—= This is a comment with a comment block —--> Visible text =/
Thepart<!-- ... ——> will not be shown in the main documentation.

Note: It is explicitly forbidden to use 3 dashes before the closing greater than sign. Doxygen won't see that as the
closing either and give a warning.

26.2 HTMLA4 character entities

The list of special HTML4 character entities with their descriptions has been taken from: Character entity
references in HTML 4. (Portions © International Organization for Standardization 1986 Permission to copy
in any form is granted for use with conforming SGML systems and applications as defined in ISO 8879, provided
this notice is included in all copies.)

Generated by Doxygen 1.13.1

https://www.w3.org/TR/html4/sgml/entities.html
https://www.w3.org/TR/html4/sgml/entities.html

26.2 HTML4 character entities

229

Entity Description

 no-break space = non-breaking space

¡ i inverted exclamation mark

¢ ¢ cent sign

£ £ pound sign

¤ o currency sign

¥ ¥ | yen sign = yuan sign

¦ ! broken bar = broken vertical bar

§ § section sign

¨ " diaeresis = spacing diaeresis

© © | copyright sign

ª a feminine ordinal indicator

« « left-pointing double angle quotation mark = left pointing guillemet
¬ - not sign

­ soft hyphen = discretionary hyphen

® ® registered sign = registered trade mark sign

¯ B macron = spacing macron = overline = APL overbar
° ° degree sign

± + | plus-minus sign = plus-or-minus sign

² 2 superscript two = superscript digit two = squared
³ 3 superscript three = superscript digit three = cubed
´ acute accent = spacing acute

smicro; u micro sign

¶ q pilcrow sign = paragraph sign

· middle dot = Georgian comma = Greek middle dot
¸ . cedilla = spacing cedilla

&supl; 1 superscript one = superscript digit one

º © masculine ordinal indicator

» » right-pointing double angle quotation mark = right pointing guillemet
&fracld; % vulgar fraction one quarter = fraction one quarter
&fracl?2; % vulgar fraction one half = fraction one half

¾ % vulgar fraction three quarters = fraction three quarters
¿ ¢ inverted question mark = turned question mark
À A latin capital letter A with grave = latin capital letter A grave
Ŕ A latin capital letter A with acute

Â A latin capital letter A with circumflex

gÃ A | latin capital letter A with tilde

Ä A | latin capital letter A with diaeresis

Å A latin capital letter A with ring above = latin capital letter A ring
Æ /E | latin capital letter AE = latin capital ligature AE
Ç G latin capital letter C with cedilla

sÈ E | latin capital letter E with grave

¢Eacute; E | latin capital letter E with acute

Ê E latin capital letter E with circumflex

Ë E | latin capital letter E with diaeresis

gIgrave;] latin capital letter | with grave

Í i latin capital letter | with acute

Generated by Doxygen 1.13.1

230

HTML Commands

Entity Description

Î [latin capital letter | with circumflex

Ï i latin capital letter | with diaeresis

Ð b latin capital letter ETH

Ñ N | latin capital letter N with tilde

sOgrave; O | latin capital letter O with grave

Ó o) latin capital letter O with acute

Ô O | latin capital letter O with circumflex
Õ O | Iatin capital letter O with tilde

Ö o} latin capital letter O with diaeresis
× X multiplication sign

&0slash; @ | latin capital letter O with stroke = latin capital letter O slash
sUgrave; U | latin capital letter U with grave

Ú U latin capital letter U with acute

Û U] latin capital letter U with circumflex
Ü U latin capital letter U with diaeresis
Ý Y | latin capital letter Y with acute

& THORN; =} latin capital letter THORN

ß B latin small letter sharp s = ess-zed
à a latin small letter a with grave = latin small letter a grave
á a latin small letter a with acute

â a latin small letter a with circumflex
ã a latin small letter a with tilde

ä a latin small letter a with diaeresis

å a latin small letter a with ring above = latin small letter a ring
æ 2 | latin small letter ae = latin small ligature ae
ç ¢ latin small letter ¢ with cedilla

è e latin small letter e with grave

é é latin small letter e with acute

ê é latin small letter e with circumflex

ë é latin small letter e with diaeresis
ì i latin small letter i with grave

í i latin small letter i with acute

î 1 latin small letter i with circumflex

ï i latin small letter i with diaeresis

ð 0 latin small letter eth

ñ i latin small letter n with tilde

ò 0 latin small letter o with grave

ó 6 latin small letter o with acute

ô 0 latin small letter o with circumflex
sõ 0 latin small letter o with tilde

souml; 0 latin small letter o with diaeresis
÷ = division sign

ø o latin small letter o with stroke, = latin small letter o slash
ù u latin small letter u with grave

ú 1 latin small letter u with acute

û a latin small letter u with circumflex

sü G latin small letter u with diaeresis
ý y latin small letter y with acute

Generated by Doxygen 1.13.1

26.2 HTML4 character entities

231

Entity Description

þ o] latin small letter thorn
ÿ y latin small letter y with diaeresis
ƒ f latin small f with hook = function = florin
Α A greek capital letter alpha
Β B greek capital letter beta
&Gamma ; r greek capital letter gamma
Δ A greek capital letter delta
Ε E greek capital letter epsilon
Ζ Z greek capital letter zeta
Η H greek capital letter eta
Θ ® | greek capital letter theta
Ι I greek capital letter iota
Κ K greek capital letter kappa
Λ A greek capital letter lambda
Μ M | greek capital letter mu
Ν N greek capital letter nu
Ξ 5 greek capital letter xi
Ο O | greek capital letter omicron
Π IT | greek capital letter pi
Ρ P greek capital letter rho
Σ XY greek capital letter sigma
Τ T greek capital letter tau
Υ T greek capital letter upsilon
Φ ® | greek capital letter phi
Χ X greek capital letter chi
Ψ ¥ | greek capital letter psi
Ω Q | greek capital letter omega
α a | greek small letter alpha
sbeta; B greek small letter beta
γ Y greek small letter gamma
sdelta;) greek small letter delta
ε £ greek small letter epsilon
ζ ¢ greek small letter zeta
seta; n | greek small letter eta
θ 0 greek small letter theta
ι 1 greek small letter iota
κ K greek small letter kappa
λ A greek small letter lambda
μ | greek small letter mu
ν 1% greek small letter nu

ξ & | greek small letter xi
sgomicron; o greek small letter omicron
π T greek small letter pi
ρ p | greek small letter rho
ς S greek small letter final sigma
σ (o greek small letter sigma
τ T greek small letter tau
υ v greek small letter upsilon

Generated by Doxygen 1.13.1

232

HTML Commands

Entity Description

φ ® greek small letter phi

χ X greek small letter chi

ψ v | greek small letter psi

sω o | greek small letter omega
ϑ | ¥ | greek small letter theta symbol
ϒ T | greek upsilon with hook symbol
ϖ @ | greek pi symbol

• . bullet = black small circle
… . horizontal ellipsis = three dot leader
sprime; ’ prime = minutes = feet

″ ? double prime = seconds = inches
‾ overline = spacing overscore
⁄ / fraction slash

swelerp; £ | script capital P = power set = Weierstrass p
ℑ 3 | blackletter capital | = imaginary part
ℜ R | blackletter capital R = real part symbol
™ ™ | trade mark sign

ℵ X | alef symbol = first transfinite cardinal
← < | leftwards arrow

↑ 0 upwards arrow

→ — | rightwards arrow

sdarr; d downwards arrow

↔ < | left right arrow

↵ < | downwards arrow with corner leftwards = carriage return
&1Arr; < | leftwards double arrow

&UATT; T upwards double arrow

&TArr; = | rightwards double arrow

⇓ U downwards double arrow

⇔ & | left right double arrow

∀ A4 for all

spart; 0 partial differential

∃ = there exists

sempty; 0 empty set = null set = diameter
∇ \Y% nabla = backward difference
∈ S element of

∉ ¢ not an element of

∋ > contains as member

∏ I1 | n-ary product = product sign

∑ Y | n-ary summation

− - minus sign

∗ * asterisk operator

√ v/ | square root = radical sign

∝ o< proportional to

∞ o infinity

∠ Z | angle

∧ A logical and = wedge

∨ \% logical or = vee

∩ N intersection = cap

Generated by Doxygen 1.13.1

26.2 HTML4 character entities

233

Entity Description

∪ @] union = cup

∫ Ik integral

&thered; therefore

∼ ~ | tilde operator = varies with = similar to
≅ = | approximately equal to
≈ =~ | almost equal to = asymptotic to
≠ =% | notequal to

≡ = identical to

≤ < less-than or equal to

≥ > | greater-than or equal to

⊂ C subset of

⊃ D | superset of

⊄ ¢ not a subset of

⊆ C | subset of or equal to

⊇ O | superset of or equal to
⊕ @ | circled plus = direct sum
s⊗ ® circled times = vector product
⊥ 1 | uptack = orthogonal to = perpendicular
⋅ dot operator

⌈ [left ceiling = apl upstile
⌉ | right ceiling

⌊ | | left floor = apl downstile
srfloor; | right floor

⟨ (left-pointing angle bracket = bra
s⟩) right-pointing angle bracket = ket
s◊ O lozenge

♠ & | black spade suit

sclubs; & | black club suit = shamrock
shearts; Q | black heart suit = valentine
sdiams; { | black diamond suit

" " quotation mark = APL quote
& & ampersand

&1t; < less-than sign

> > | greater-than sign

Œ CE | latin capital ligature OE
œ ce | latin small ligature oe
Š 8 latin capital letter S with caron
š $ latin small letter s with caron
Ÿ Y | latin capital letter Y with diaeresis
ˆ o maodifier letter circumflex accent
stilde; - small tilde

  en space

semsp; em space

  thin space

&zwnij; zero width non-joiner

&zwi; zero width joiner

‎ left-to-right mark

‏ right-to-left mark

Generated by Doxygen 1.13.1

234

HTML Commands

Entity Description

– - en dash

— — | emdash

‘ ‘ left single quotation mark

’ ’ right single quotation mark

‚ , single low-9 quotation mark

&1ldquo; “ left double quotation mark

” ? right double quotation mark

„ ” double low-9 quotation mark
† T dagger

‡ i double dagger

‰ %o | per mille sign

‹ < single left-pointing angle quotation mark
› > single right-pointing angle quotation mark
€ € euro sign

Doxygen extensions:

&tm;

™

trade mark sign

'

apostrophe

Generated by Doxygen 1.13.1

Chapter 27

XML Commands

Doxygen supports most of the XML commands that are typically used in C# code comments. The XML tags are
defined in Appendix D of the ECMA-334 standard, which defines the C# language. Unfortunately, the specification
is not very precise and a number of the examples given are of poor quality.

Here is the list of tags supported by Doxygen:

XML Command Description

<c> Identifies inline text that should be rendered as a piece of
code. Similar to using <tt>text</tt>.

<code> Set one or more lines of source code or program output.

Note that this command behaves like \code ... \endcode
for C# code, but it behaves like the HTML equivalent
<CODE>...</CODE> for other languages.

<description> Part of a <list> command, describes an item.

<example> Marks a block of text as an example, ignored by Doxygen.

<exception cref="member"> Identifies the exception a method can throw.

<include> Can be used to import a piece of XML from an external file.
Ignored by Doxygen at the moment.

<inheritdoc> Can be used to insert the documentation of a member of a

base class into the documentation of a member of a derived
class that reimplements it.

<item> List item. Can only be used inside a <list> context.

<list type="type"> Starts a list, supported types are bullet or number and
table. A list consists of a number of <item> tags. A list
of type table, is a two column table which can have a header.

<listheader> Starts the header of a list of type "table".

<para> Identifies a paragraph of text.

<param name="paramName"> Marks a piece of text as the documentation for parameter
"paramName". Similar to using \param.

<paramref name="paramName"> Refers to a parameter with name "paramName". Similar to
using \a.

<permission> Identifies the security accessibility of a member. Ignored by
Doxygen.

<remarks> Identifies the detailed description.

<returns> Marks a piece of text as the return value of a function or
method. Similar to using \return.

<see cref="member"> Refers to a member. Similar to \ref.

<seealso cref="member"> Starts a "See also" section referring to "member". Similar to

using \sa member.

Generated by Doxygen 1.13.1

https://ecma-international.org/publications-and-standards/standards/ecma-334/

236 XML Commands

XML Command Description

<summary> In case this tag is used outside a <DETAILS> tag this tag
identifies the brief description. Similar to using \brief. In case
this tag is used inside a <DETAILS> tag this tag identifies
the heading of the <DETAILS> tag.

<term> Part of a <list> command.

<typeparam name="paramName"> Marks a piece of text as the documentation for type parame-
ter "paramName". Similar to using \param.

<typeparamref name="paramName"> | Refers to a parameter with name "paramName". Similar to

using \a.
<value> Identifies a property. Ignored by Doxygen.
<![CDATA[...]11> The text inside this tag (on the ...) is handled as normal Doxy-

gen comment except for the XML special characters <, >
and & that are used as if they were escaped.

Here is an example of a typical piece of code using some of the above commands:

/// <summary>
/// A search engine.
/// </summary>
class Engine
{
/// <summary>
/// The Search method takes a series of parameters to specify the search criterion
/// and returns a dataset containing the result set.
/// </summary>
/// <param name="connectionString">the connection string to connect to the
/// database holding the content to search</param>
/// <param name="maxRows">The maximum number of rows to
/// return in the result set</param>
/// <param name="searchString">The text that we are searching for</param>
/// <returns>A DataSet instance containing the matching rows. It contains a maximum
/// number of rows specified by the maxRows parameter</returns>
public DataSet Search(string connectionString, int maxRows, int searchString)
{
DataSet ds = new DataSet();
return ds;

Generated by Doxygen 1.13.1

Chapter 28
Emoji support

The Unicode consortium has defined a setof emoji with the corresponding Unicode sequences. Doxy-
gen supports the subset of emoji characters as used by GitHub (based on the list https://api.github.«
com/emojis). An emoji is created using the \emoji command. For example \emoji smile or \emoji
:smile: both produce &.

28.1 Representation

For the different Doxygen output types there is an output defined:
» Unicode code sequence, the actual representation is depending on the possibilities of the fonts loaded:

- HTML
— DocBook
— RTF, converted to UTF-16 representation.

+ Image

— ATEX, in case the image can be found (see Emoji image retrieval) otherwise the plain emoiji text (i.e.
:<text>:) is displayed

« plain emoji text (i.e. : <text>:)

— man

— perl

» For XML there is a dedicated <emo ji> tag with name and unicode attributes.

28.2 Emoji image retrieval

In the list of images can be downloaded via the following Python script:

script to download the emoticons from GitHub and to produce a table for
inclusion in Doxygen. Works with python 2.7+ and python 3.x

import json

import os

mport argparse

lmport re

import urllib.request as urlrequest
ImportError:
import urllib as urlrequest
unicode_re = re.compile(r’4*?/unicode/(.*?).png\?A*’)
def get_emojis():
response = urlrequest.urlopen(’https://api.github.com/emojis’)
raw_data = response.read()
json.loads (raw_data)
def download_images (dir_name, silent):
os.path.exists (dir_name) :
os.makedirs (dir_name)
json_data = get_emojis ()
num_items = len(json_data)

Generated by Doxygen 1.13.1

http://www.unicode.org/
https://en.wikipedia.org/wiki/Emoji
https://api.github.com/emojis
https://api.github.com/emojis

238 Emoji support

cur_item=0

for image,url in sorted(json_data.items()):
image_name = image+’ .png’
cur_item=cur_item+1
if url.find(’ /unicode/’)==-1 o ot os.path.isfile(dir_name+’/’+image_name) :
success = True
with open(dir_name+’/’+image_name,’wb’) as file:
if not silent:

o

print (' %s/%s: fetching %$s’ % (cur_item,num_items, image_name))

file.write (urlrequest.urlopen (url) .read())
>xcept:
print (' Unable to fetch %s’ % (image_name))
success = False
10t success:
os.remove (dir_name+’ /'’ +image_name)

ot silent:
print (' %$s/%s: skipping %$s’ % (cur_item,num_items, image_name)
def produce_table():
json_data = get_emojis ()

lines = []
‘or image,url 1 sorted(json_data.items()):
match = unicode_re.match (url)
1f match:
unicodes = match.group(l).split(’-")
unicodes_html = ”.join (["&#x"+x+";" for x in unicodes]
image_str = "\":"+image+":\","
unicode_str = "\""+unicodesihtml+"\""
lines.append(’ { %-42s %-38s }’ % (image_str,unicode_str)
out_str = ’,\n’.join(lines)
print ("{")
print (out_str)
print ("}; ")
if _ _name__=="__main__":

parser = argparse.ArgumentParser (

parser.add_argument (' -d’,’--dir’,help='directory to place images in’)
parser.add_argument (' -t’,’--table’,help='generate code fragment’,action=’store_true’)
parser.add_argument (' -s’,’--silent’,help='silent mode’,action='store_true’)

args = parser.parse_args ()

args.table:
produce_table ()
£ args.dir:
download_images (args.dir, args.silent)

When invoking the script with the —d image_dir option, the images will by downloaded to the image_dir
directory.

When invoking the script with the —s option, no progress messages are shown while fetching the images, except
for when fetching an image fails.

By means of the Doxygen configuration parameter LATEX_EMOJI_DIRECTORY the requested directory can be
selected.

For convenience a zip with the result of running the script can also be downloaded from https://www.«
doxygen.nl/dl/github_emojis.zip

For an overview of the supported emoji one can issue the command:

doxygen —-f emoji <outputFileName>

Generated by Doxygen 1.13.1

https://www.doxygen.nl/dl/github_emojis.zip
https://www.doxygen.nl/dl/github_emojis.zip

Part Il

Developers Manual

Chapter 29

Internationalization

Support for multiple languages

Doxygen has built-in support for multiple languages. This means that the text fragments, generated by doxygen, can
be produced in languages other than English (the default). The output language is chosen through the configuration
option OUTPUT_LANGUAGE in the configuration file (with default name and known as Doxyfile). To switch between
languages inside a comment block the \~~ command can be used.

Currently (version 1.13.1), 42 languages are supported (sorted alphabetically): Afrikaans, Arabic, Armenian, Brazil-
ian Portuguese, Bulgarian, Catalan, Chinese, Chinese Traditional, Croatian, Czech, Danish, Dutch, English, Es-
peranto, Finnish, French, German, Greek, Hindi, Hungarian, Indonesian, Italian, Japanese (+En), Korean (+En),
Latvian, Lithuanian, Macedonian, Norwegian, Persian, Polish, Portuguese, Romanian, Russian, Serbian, Serbian«
Cyrillic, Slovak, Slovene, Spanish, Swedish, Turkish, Ukrainian, and Vietnamese..

The table of information related to the supported languages follows. It is sorted by language alphabetically. The
Status column was generated from sources and shows approximately the last version when the translator was
updated.

Language Maintainer Contact address Status
Afrikaans Johan Prinsloo johan at zippysnoek dot com 1.6.0
Arabic Moaz Reyad [resigned] moazreyad at yahoo dot com 1.4.6
Muhammad Bashir Al-Noimi mbnoimi at gmail dot com
Armenian Armen Tangamyan armen dot tangamyan at anu dot edu dot au 1.8.0
Brazilian Portuguese | Fabio "FJTC" Jun Takada Chin0 | jun-chino at uol dot com dot br up-to-date
Bulgarian Kiril Kirilov kpkirilov at abv dot bg 1.9.4
Catalan Maximiliano Pin max dot pin at bitroit dot com 1.8.0
Albert Mora [unreachable] amora at iua dot upf dot es
Chinese Lian Yang lian dot yang dot cn at gmail dot com up-to-date
Li Daobing lidaobing at gmail dot com
Wei Liu liuwei at asiainfo dot com
Chinese Traditional Daniel YC Lin dlin dot tw at gmail dot com 1.8.15
Gary Lee garywlee at gmail dot com
Croatian Boris Bralo boris dot bralo at gmail dot com 1.8.2
Czech Petr Prikryl prikryl at atlas dot cz 1.9.6
Danish Poul-Erik Hansen pouhan at gnotometrics dot dk 1.8.0
Erik Sge Sarensen eriksoe+doxygen at daimi dot au dot dk
Dutch Dimitri van Heesch doxygen at gmail dot com up-to-date
English Dimitri van Heesch doxygen at gmail dot com up-to-date
Esperanto Ander Martinez ander dot basaundi at gmail dot com 1.84
Finnish Antti Laine antti dot a dot laine at tut dot f£i 1.6.0
French David Martinet contact at e-concept-applications dot fr 1.9.5
Xavier Outhier xouthier at yahoo dot fr
Benoit BROSSE Benoit dot BROSSE at ingenico dot com
German Peter Grotrian Peter dot Grotrian at pdv-FS dot de 1.8.15
Jens Seidel jensseidel at users dot sf dot net
Greek Paul Gessos gessos dot paul at yahoo dot gr up-to-date
Hindi Harsh Rathod hrathore50 at ymail dot com 1.9.4
Hungarian Akos Kiss akiss at users dot sourceforge dot net 1.8.15
Foéldvari Gyérgy lunreachable] foldvari lost at cyberspace
Indonesian Hendy Irawan ceefour at gauldong dot net 1.8.0
Italian Alessandro Falappa alex dot falappa at gmail dot com 1.8.15
Ahmed Aldo Faisal aaf23 at cam dot ac dot uk
Japanese Suzumizaki-Kimikata szmml at hl2u.com 1.8.15
Hiroki Iseri goyoki at gmail dot com

Generated by Doxygen 1.13.1

242 Internationalization

Ryunosuke Satoh sun594 at hotmail dot com
Kenji Nagamatsu [unreachable] naga at joyful dot club dot ne dot jp
lwasa Kazmi [unreachable] iwasa at cosmo-system dot Jp
JapaneseEn see the Japanese language English based
Korean Kim Taedong £1y1004 at gmail dot com 1.8.15
SooYoung Jung Jung5000 at gmail dot com
Richard Kim [unreachable] ryk at dspwiz dot com
KoreanEn see the Korean language English based
Latvian Lauris lauris at nix.lv 1.8.4
Lithuanian Tomas Simonaitis [unreachable] haden at homelan dot 1t 1.4.6
Mindaugas Radzius [unreachable] mindaugasradzius at takas dot 1t
Aidas Berukstis [unreachable] aidasber at takas dot 1t
— searching for the maintainer — [Please, try to help to find someone.]
Macedonian Slave Jovanovski slavejovanovski at yahoo dot com 1.6.0
Norwegian Lars Erik Jordet lejordet at gmail dot com 1.4.6
Persian Ali Nadalizadeh nadalizadeh at gmail dot com 1.7.5
Polish Piotr Kaminski [unreachable] Piotr dot Kaminski at ctm dot gdynia dot pl up-to-date
Grzegorz Kowal [unreachable] g_kowal at poczta dot onet dot pl
Krzysztof Kral krzysztof dot kral at gmail dot com
Marek Ledworowski mledworo at gmail dot com
Portuguese Rui Godinho Lopes [resigned] rgl at ruilopes dot com up-to-date
Fabio "FJTC" Jun Takada Chin0 | jun-chino at uwol dot com dot br
Romanian lonut Dumitrascu reddumy at yahoo dot com 1.8.15
Alexandru losup aiosup at yahoo dot com
Russian Brilliantov Kirill Vladimirovich brilliantov at byterg dot ru up-to-date
Alexandr Chelpanov cav at cryptopro dot ru
Serbian Dejan Milosavljevic lunreachable] dmilos at email dot com 1.6.0
SerbianCyrillic Nedeljko Stefanovic stenedjo at yahoo dot com 1.6.0
Slovak Kali+Laco Svec [the Slovak language advisors] 1.8.15
Petr Prikryl prikryl at atlas dot cz
Slovene Matjaz Ostroversnik matjaz dot ostroversnik at ostri dot org 1.4.6
Spanish Bartomeu bartomeu at loteria3cornella dot com 1.9.6
Francisco Oltra Thennet lunreachable] foltra at puc dot cl
David Vaquero david at grupoikusnet dot com
Swedish Bjorn Palmqyvist bjorn.palmqvist at aidium.se 1.9.6
Turkish Emin llker Cetinbas niw3 at yahoo dot com 1.7.5
Ukrainian Olexij Tkatchenko [resigned] olexij at tkatchenko dot com 1.8.4
Petro Yermolenko python at i dot ua
Vietnamese Dang Minh Tuan tuanvietkey at gmail dot com 1.6.0

Most people on the list have indicated that they were also busy doing other things, so if you want to help to speed
things up please let them (or me) know.
If you want to add support for a language that is not yet listed please read the next section.

Adding a new language to doxygen

This short HOWTO explains how to add support for the new language to doxygen:
Just follow the following steps:

1. Tell me for which language (say YourLanguage) you want to add support. If no one else is already working
on support for that language, you will be assigned as the maintainer for the language.

2. Add to the file doxygen/src/config.xml, at the appropriate place in the OUTPUT_LANGUAGE part,
the line:

<value name=’YourLanguage’ />

3. Create a copy of doxygen/src/translator_en.h and name it doxygen/src/translator_«
<your_2_letter_country_code>.h Il use xx in the rest of this document (and XX for the upper-
case version).

4. Edit doxygen/src/language.cpp: Add the following code:

#include<translator_xx.h>

Now, in setTranslator () add

case OUTPUT_LANGUAGE_t::YourLanguage: theTranslator = new TranslatorYourlLanguage; break;

Generated by Doxygen 1.13.1

243

5. Edit doxygen/src/translator_xx.h:

» Use the UTF-8 capable editor and open the file using the UTF-8 mode (non BOM mode).

* Rename TRANSLATOR_EN_H to TRANSLATOR_XX_H twice (i.e. inthe #ifndef and #define
preprocessor commands at the beginning of the file).

* Rename TranslatorEnglishto TranslatorYourLanguage

* Inthe member idLanguage () change "english" into the name of your language (use lower case char-
acters only). Depending on the language you may also wish to change the member functions latex«
LanguageSupportCommand () and other (you will recognize them when you start the work).

« Edit all the strings that are returned by the member functions that start with t r. Try to match punctuation
and capitals! To enter special characters (with accents) you can:

— Enter them directly if your keyboard supports that. Recall that the text is expected to be saved using
the UTF-8 encoding. Doxygen will translate the characters to proper IATEX and leaves the HTML
and man output in UTF-8.

— Use HTML codes like sauml; for an a with an umlaut (i.e. &). See the HTML specification for
the codes.

6. Edit doxygen/doc/maintainers.txt and add yourself to the list of maintainers like:

TranslatorYourLanguage
<your name>: <your dot email at your dot domain>

7. Build the documentation by giving the appropriate build command (like: make docs).

8. Now you can use OUTPUT_LANGUAGE = your_language_name in the config file to generate output
in your language.

9. The preferred way is to clone the doxygen repository at GitHub and make a Pull Request. Alternatively send
translator_xx.h to me so | can add it to doxygen. Send also your name and e-mail address to be
included inthe maintainers.txt list.

Maintaining a language

New versions of doxygen may use new translated sentences. In such situation, the Translator class requires
implementation of new methods — its interface changes. Of course, the English sentences need to be translated
to the other languages. At least, new methods have to be implemented by the language-related translator class;
otherwise, doxygen wouldn't even compile. Waiting until all language maintainers have translated the new sentences
and sent the results would not be very practical. The following text describes the usage of translator adapters to
solve the problem.

The role of Translator Adapters. Whenever the Translator class interface changes in the new release, the
new class TranslatorAdapter_x_y_zisaddedtothe translator_adapter.hfile (herex,y, andzare
numbers that correspond to the current official version of doxygen). All translators that previously derived from the
Translator class now derive from this adapter class.

The TranslatorAdapter_x_y_z class implements the new, required methods. If the new method replaces
some similar but obsolete method(s) (e.g. if the number of arguments changed and/or the functionality of the older
method was changed or enriched), the TranslatorAdapter_x_y_z class may use the obsolete method to
get the result which is as close as possible to the older result in the target language. If it is not possible, the result
(the default translation) is obtained using the English translator, which is (by definition) always up-to-date.

For example, when the new trFile () method with parameters (to determine the capitalization of the first letter
and the singular/plural form) was introduced to replace the older method trFiles () without arguments, the
following code appeared in one of the translator adapter classes:

/+! This is the default implementation of the obsolete method
* used in the documentation of a group before the list of

% links to documented files. This is possibly localized.

*/

virtual QCString trFiles()

{ return "Files"; }

/%! This is the localized implementation of newer equivalent
* using the obsolete method trFiles().
*/

Generated by Doxygen 1.13.1

244 Internationalization

virtual QCString trFile(bool first_capital, bool singular)
{
if (first_capital && !singular)
return trFiles(); // possibly localized, obsolete method
else
return english.trFile(first_capital, singular);

}

The trFiles () is not presentinthe TranslatorEnglish class, because it was removed as obsolete. How-
ever, it was used until now and its call was replaced by

trFile (true, false)

in the doxygen source files. Probably, many language translators implemented the obsolete method, so it perfectly
makes sense to use the same language dependent result in those cases. The TranslatorEnglish does not
implement the old method. It derives from the abstract Translator class. On the other hand, the old translator
for a different language does not implement the new t rFile () method. Because of that it is derived from another
base class — TranslatorAdapter_x_y_z. The TranslatorAdapter_x_y_z class has to implement
the new, required t rFile () method. However, the translator adapter would not be compiled if the trFiles ()
method was not implemented. This is the reason for implementing the old method in the translator adapter class
(using the same code, that was removed from the TranslatorEnglish).

The simplest way would be to pass the arguments to the English translator and to return its result. Instead, the
adapter uses the old trFiles () in one special case —whenthe new trFile (true, false) iscalled. This
is the mostly used case at the time of introducing the new method — see above. While this may look too complicated,
the technique allows the developers of the core sources to change the Translator interface, while the users may not
even notice the change. Of course, when the new trFile () is used with different arguments, the English result
is returned and it will be noticed by non English users. Here the maintainer of the language translator should
implement at least that one particular method.

What says the base class of a language translator? If the language translator class inherits from any adapter
class then maintenance is needed. In such case, the language translator is considered not up-to-date. On the other
hand, if the language translator derives directly from the abstract class Translator, the language translator is
up-to-date.

The translator adapter classes are chained so that the older translator adapter class uses the one-step-newer
translator adapter as the base class. The newer adapter does less adapting work than the older one. The oldest
adapter class derives (indirectly) from all of the adapter classes. The name of the adapter class is chosen so that
its suffix is derived from the previous official version of doxygen that did not need the adapter. This way, one can
say approximately, when the language translator class was last updated — see details below.

The newest translator adapter derives from the abstract TranslatorAdapterBase class that derives directly
from the abstract Translator class. It adds only the private English-translator member for easy implementation
of the default translation inside the adapter classes, and it also enforces implementation of one method for notifying
the user that the language translation is not up-to-date (because of that some sentences in the generated files may
appear in English).

Once the oldest adapter class is not used by any of the language translators, it can be removed from the doxygen
project. The maintainers should try to reach the state with the minimal number of translator adapter classes.

To simplify the maintenance of the language translator classes for the supported languages, the
translator.py Python script was developed (located in doxygen/doc directory). It extracts the impor-
tant information about obsolete and new methods from the source files for each of the languages. The information
is stored in the translator report ASCII file (t ranslator_report.txt).

Looking at the base class of the language translator, the script guesses also the status of the translator — see the
last column of the table with languages above. The translator.py is called automatically when the doxygen
documentation is generated. You can also run the script manually whenever you feel that it can help you. Of course,
you are not forced to use the results of the script. You can find the same information by looking at the adapter class
and its base classes.

How should | update my language translator? First, you should be the language maintainer, or you should
let him/her know about the changes. The following text was written for the language maintainers as the primary
audience.

There are several approaches to be taken when updating your language. If you are not extremely busy, you should
always chose the most radical one. When the update takes much more time than you expected, you can always
decide use some suitable translator adapter to finish the changes later and still make your translator working.

The most radical way of updating the language translator is to make your translator class derive directly from
the abstract class Translator and provide translations for the methods that are required to be implemented —the

Generated by Doxygen 1.13.1

245

compiler will tell you if you forgot to implement some of them. If you are in doubt, have a look atthe Translator«
English class to recognize the purpose of the implemented method. Looking at the previously used adapter class
may help you sometimes, but it can also be misleading because the adapter classes do implement also the obsolete
methods (see the previous trFiles () example).

In other words, the up-to-date language translators do not need the TranslatorAdapter_x_y_z classes at
all, and you do not need to implement anything else than the methods required by the Translator class (i.e. the pure
virtual methods of the Translator —they end with =0;).

If everything compiles fine, try to run translator.py, and have a look at the translator report (ASCII file) at
the doxygen/doc directory. Your translator is marked as up-to-date only if the script does not detect anything
special. If the translator uses the Translator base class, there still may be some remarks related to your source
code. In the case, the translator is marked as almost up-to-date. Namely, the obsolete methods—that are not used
at all-may be listed in the section for your language. Simply, remove their code (and run the translator.py
again). Also, you will be informed when you forgot to change the base class of your translator class to some newer
adapter class or directly to the Translator class.

If you do not have time to finish all the updates you should still start with the most radical approach as described
above. You can always change the base class to the translator adapter class that implements all of the not-yet-
implemented methods.

If you prefer to update your translator gradually, have a look at TranslatorEnglish (the translator«
_en.h file). Inside, you will find the comments like new since 1.2.4 that separate always a number of
methods that were implemented in the stated version. Do implement the group of methods that are placed below
the comment that uses the same version numbers as your translator adapter class. (For example, your translator
class have to use the TranslatorAdapter_1_2_4,ifit does not implement the methods below the comment
new since 1.2.4.When youimplementthem, your class should use a newer translator adapter.

Run the translator.py script occasionally and give it your xx identification (from translator_xx.h) to
create the translator report shorter (also produced faster) — it will contain only the information related to your trans-
lator. Once you reach the state when the base class should be changed to some newer adapter, you will see the
note in the translator report.

Warning: Don't forget to compile doxygen to discover, whether it is compilable. The translator.py does not
check if everything is correct with respect to the compiler. Because of that, it may lie sometimes about the necessary
base class.

The most obsolete language translators would lead to implementation of too complicated adapters. Because of
that, doxygen developers may decide to derive such translators from the TranslatorEnglish class, which is
by definition always up-to-date.

When doing so, all the missing methods will be replaced by the English translation. This means that not-
implemented methods will always return the English result. Such translators are marked using the word obsolete.
You should read it really obsolete. No guess about the last update can be done.

Often, it is possible to construct better result from the obsolete methods. Because of that, the translator adapter
classes should be used if possible. On the other hand, implementation of adapters for really obsolete translators
brings too much maintenance and run-time overhead.

Generated by Doxygen 1.13.1

246 Internationalization

Generated by Doxygen 1.13.1

Chapter 30

Perl Module Output

Since version 1.2.18, Doxygen can generate a new output format we have called the "Perl Module output format".
It has been designed as an intermediate format that can be used to generate new and customized output without
having to modify the Doxygen source. Therefore, its purpose is similar to the XML output format that can be also
generated by Doxygen. The XML output format is more standard, but the Perl Module output format is possibly
simpler and easier to use.

The Perl Module output format is still experimental at the moment and could be changed in incompatible ways
in future versions, although this should not be very probable. It is also lacking some features of other Doxygen
backends. However, it can be already used to generate useful output, as shown by the Perl Module-based IATEX
generator.

Please report any bugs or problems you find in the Perl Module backend or the Perl Module-based IATEX generator
tothe Doxygen issue tracker. Suggestions are welcome as well (see also: How to report a bug).

30.1 Usage

When the GENERATE_PERLMOD tag is enabled in the Doxyfile, running Doxygen generates a number of files
in the per1mod/ subdirectory of your output directory. These files are the following:

* DoxyDocs .pm: This is the Perl module that actually contains the documentation, in the Perl Module format
described below.

* DoxyModel . pm: This Perl module describes the structure of DoxyDocs . pm, independently of the actual
documentation. See below for details.

« doxyrules.make: This file contains the make rules to build and clean the files that are generated from
the Doxyfile. Also contains the paths to those files and other relevant information. This file is intended to
be included by your own Makefile.

* Makefile: This is a simple Makefile including doxyrules.make.

To make use of the documentation stored in DoxyDocs . pm you can use one of the default Perl Module-based
generators provided by Doxygen (at the moment this includes the Perl Module-based IATEX generator, see below) or
write your own customized generator. This should not be too hard if you have some knowledge of Perl and it's the
main purpose of including the Perl Module backend in Doxygen. See below for details on how to do this.

30.2 Using the LaTeX generator.

The Perl Module-based IATEX generator is pretty experimental and incomplete at the moment, but you could find it
useful nevertheless. It can generate documentation for functions, typedefs and variables within files and classes
and can be customized quite a lot by redefining TEX macros. However, there is still no documentation on how to do
this.

Setting the PERLMOD_LATEX tag to YES in the Doxyfile enables the creation of some additional files in the
perlmod/ subdirectory of your output directory. These files contain the Perl scripts and IATEX code necessary to
generate PDF and DVI output from the Perl Module output, using pdflatex and latex respectively. Rules to
automate the use of these files are also added to doxyrules.make and the Makefile.

Generated by Doxygen 1.13.1

https://github.com/doxygen/doxygen/issues

248

Perl Module Output

The

additional generated files are the following:

* doxylatex.pl: This Perl script uses DoxyDocs .pm and DoxyModel . pm to generate doxydocs .«

tex, a TeX file containing the documentation in a format that can be accessed by IATEX code. This file is not
directly LaTeXable.

+ doxyformat . tex: This file contains the IATEX code that transforms the documentation from doxydocs.tex

into IATEX text suitable to be IATEX'ed and presented to the user.

* doxylatex—template.pl: This Perl script uses DoxyModel .pm to generate doxytemplate.«

tex, a TeXfile defining default values for some macros. doxytemplate. texisincluded by doxyformat.«
tex to avoid the need of explicitly defining some macros.

* doxylatex.tex: This is a very simple IATEX document that loads some packages and includes

doxyformat.tex and doxydocs.tex. This document is IATgX'ed to produce the PDF and DVI doc-
umentation by the rules added to doxyrules.make.

30.2.1 Creation of PDF and DVI output

To try this you need to have installed 1atex, pdflatex and the packages used by doxylatex.tex.

1.

30.

The

Update your Doxyfile to the latest version using:

doxygen -u Doxyfile

. Set both GENERATE_PERLMOD and PERLMOD_LATEX tags to YES in your Doxyfile.
. Run Doxygen on your Doxyfile:

doxygen Doxyfile

. Aperlmod/ subdirectory should have appeared in your output directory. Enter the per 1lmod/ subdirectory
and run:

make pdf

This should generate a doxylatex.pdf with the documentation in PDF format.
Run:

make dvi

This should generate a doxylatex.dvi with the documentation in DVI format.

3 Documentation format.

Perl Module documentation generated by Doxygen is stored in DoxyDocs .pm. This is a very simple Perl

module that contains only two statements: an assignment to the variable $doxydocs and the customary 1;
statement which usually ends Perl modules.

The

documentation is stored in the variable $doxydocs, which can then be accessed by a Perl script using

DoxyDocs . pm.
Sdoxydocs contains a tree-like structure composed of three types of nodes: strings, hashes and lists.

* Strings: These are normal Perl strings. They can be of any length can contain any character. Their
semantics depends on their location within the tree. This type of node has no children.

* Hashes: These are references to anonymous Perl hashes. A hash can have multiple fields, each with a
different key. The value of a hash field can be a string, a hash or a list, and its semantics depends on the key
of the hash field and the location of the hash within the tree. The values of the hash fields are the children of
the node.

* Lists: These are references to anonymous Perl lists. A list has an undefined number of elements, which
are the children of the node. Each element has the same type (string, hash or list) and the same semantics,
depending on the location of the list within the tree.

As you can see, the documentation contained in $doxydocs does not present any special impediment to be
processed by a simple Perl script.

Generated by Doxygen 1.13.1

30.4 Data structure 249

30.4 Data structure

You might be interested in processing the documentation contained in DoxyDocs . pm without needing to take into
account the semantics of each node of the documentation tree. For this purpose, Doxygen generates a Doxy+«
Model . pm file which contains a data structure describing the type and children of each node in the documentation
tree.

The rest of this section is to be written yet, but in the meantime you can look at the Perl scripts generated by Doxygen
(such as doxylatex.pl ordoxytemplate—-latex.pl) to get anidea on how to use DoxyModel . pm.

30.5 Perl Module Tree Nodes

Nodes in the documentation tree of the Perl Module output format.

This is a description of the structure of the documentation tree in DoxyDocs.pm. Each item in the list below
describes a node in the tree, and the format of the description is as follows:

+ [key =>] Name (fype). Explanation of the content.
Where

» The "key =>" part only appears if the parent node is a hash. "key" is the key for this node.
« "Name" is a unique name for the node, defined in DoxyModel.pm.

» "(type)"is the type of the node: "string" for string nodes, "hash" for hash nodes, "list" for list nodes, and "doc"
for documentation subtrees. The structure of documentation subtrees is not described anywhere yet, but you
can look for example at doxylatex.pl to see how to process it.

The meaning of each node in the documentation tree is as follows:
* Root (hash). Root node.

— classes => Classes (list). Documented classes.

= Class (hash). A documented class.

- protected_members => ClassProtectedMembers (hash). Information about the protected
members in the class.

- members => ClassProtectedMemberList (/ist). protected member list.
- ClassProtectedMember (hash). A protected member.

- protection => ClassProtectedMemberProtection (string). Protection of the protected
member.

- detailed => ClassProtectedMemberDetailed (hash). Detailed information about the
protected member.

- doc => ClassProtectedMemberDetailedDoc (doc). Detailed documentation for the
protected member.

- see => ClassProtectedMemberSee (doc). "See also" documentation for the pro-
tected member.

- kind => ClassProtectedMemberKind (string). Kind of protected member (usually
"variable").

- name => ClassProtectedMemberName (string). Name of the protected member.
- type => ClassProtectedMemberType (string). Data type of the protected member.
- detailed => ClassDetailed (hash). Detailed information about the class.
- doc => ClassDetailedDoc (doc). Detailed documentation block for the class.

- protected_typedefs => ClassProtectedTypedefs (hash). Information about the protected
typedefs in the class.

- members => ClassProtectedTypedefList (list). protected typedef list.
- ClassProtectedTypedef (hash). A protected typedef.

- protection => ClassProtectedTypedefProtection (string). Protection of the protected
typedef.

Generated by Doxygen 1.13.1

250 Perl Module Output

- detailed => ClassProtectedTypedefDetailed (hash). Detailed information about the
protected typedef.

- doc => ClassProtectedTypedefDetailedDoc (doc). Detailed documentation for the
protected typedef.

- see => ClassProtectedTypedefSee (doc). "See also" documentation for the pro-
tected typedef.

- kind => ClassProtectedTypedefKind (string). Kind of protected typedef (usually
"typedef").
- name => ClassProtectedTypedefName (string). Name of the protected typedef.
- type => ClassProtectedTypedefType (siring). Data type of the protected typedef.
- name => ClassName (string). Name of the class.

- private_members => ClassPrivateMembers (hash). Information about the private members
in the class.

- members => ClassPrivateMemberList (list). private member list.
- ClassPrivateMember (hash). A private member.

- protection => ClassPrivateMemberProtection (string). Protection of the private
member.

- detailed => ClassPrivateMemberDetailed (hash). Detailed information about the pri-
vate member.

- doc => ClassPrivateMemberDetailedDoc (doc). Detailed documentation for the
private member.

- see => ClassPrivateMemberSee (doc). "See also" documentation for the private
member.

- kind => ClassPrivateMemberKind (string). Kind of private member (usually "vari-
able").

- name => ClassPrivateMemberName (string). Name of the private member.
- type => ClassPrivateMemberType (string). Data type of the private member.

- private_typedefs => ClassPrivateTypedefs (hash). Information about the private typedefs in
the class.

- members => ClassPrivateTypedefList (/ist). private typedef list.
- ClassPrivateTypedef (hash). A private typedef.

- protection => ClassPrivateTypedefProtection (string). Protection of the private type-
def.

- detailed => ClassPrivateTypedefDetailed (hash). Detailed information about the pri-
vate typedef.

- doc => ClassPrivateTypedefDetailedDoc (doc). Detailed documentation for the
private typedef.

- see => ClassPrivateTypedefSee (doc). "See also" documentation for the private
typedef.

- kind => ClassPrivateTypedefKind (string). Kind of private typedef (usually "typedef").
- name => ClassPrivateTypedefName (string). Name of the private typedef.
- type => ClassPrivateTypedefType (string). Data type of the private typedef.

- protected_methods => ClassProtectedMethods (hash). Information about the protected
methods in the class.

- members => ClassProtectedMethodList (/ist). protected method list.
- ClassProtectedMethod (hash). A protected method.

- parameters => ClassProtectedMethodParams (lisf). List of the parameters of the
protected method.

- ClassProtectedMethodParam (hash). A parameter of the protected method.
- declaration_name => ClassProtectedMethodParamName (string). The name
of the parameter.
- type => ClassProtectedMethodParamType (string). The data type of the pa-
rameter.

Generated by Doxygen 1.13.1

30.5 Perl Module Tree Nodes 251

- protection => ClassProtectedMethodProtection (string). Protection of the protected
method.

- virtualness => ClassProtectedMethodVirtualness (string). Virtualness of the pro-
tected method.

- detailed => ClassProtectedMethodDetailed (hash). Detailed information about the
protected method.

- params => ClassProtectedMethodPDBlocks (list). List of parameter documenta-
tion blocks for the protected method.

- ClassProtectedMethodPDBIlock (hash). A parameter documentation block for
the protected method.

- parameters => ClassProtectedMethodPDParams (list). Parameter list for this
parameter documentation block.

- ClassProtectedMethodPDParam (hash). A parameter documented by this
documentation block.

- name => ClassProtectedMethodPDParamName (string). Name of the
parameter.

- doc => ClassProtectedMethodPDDoc (doc). Documentation for this param-
eter documentation block.

- doc => ClassProtectedMethodDetailedDoc (doc). Detailed documentation for the
protected method.

- see => ClassProtectedMethodSee (doc). "See also" documentation for the pro-
tected method.

- return => ClassProtectedMethodReturn (doc). Documentation about the return
value of the protected method.

- kind => ClassProtectedMethodKind (string). Kind of protected method (usually
"function").

- name => ClassProtectedMethodName (string). Name of the protected method.
- type => ClassProtectedMethodType (string). Data type returned by the protected

method.
- static => ClassProtectedMethodStatic (string). Whether the protected method is
static.
- public_typedefs => ClassPublicTypedefs (hash). Information about the public typedefs in the

class.
- members => ClassPublicTypedefList (/ist). public typedef list.
- ClassPublicTypedef (hash). A public typedef.

- protection => ClassPublicTypedefProtection (string). Protection of the public type-
def.

- detailed => ClassPublicTypedefDetailed (hash). Detailed information about the pub-
lic typedef.

- doc => ClassPublicTypedefDetailedDoc (doc). Detailed documentation for the
public typedef.

- see => ClassPublicTypedefSee (doc). "See also" documentation for the public
typedef.

- kind => ClassPublicTypedefKind (string). Kind of public typedef (usually "typedef").
- name => ClassPublicTypedefName (string). Name of the public typedef.
- type => ClassPublicTypedefType (string). Data type of the public typedef.

- public_members => ClassPublicMembers (hash). Information about the public members in
the class.

- members => ClassPublicMemberList (list). public member list.
- ClassPublicMember (hash). A public member.
- protection => ClassPublicMemberProtection (string). Protection of the public mem-
ber.
- detailed => ClassPublicMemberDetailed (hash). Detailed information about the pub-
lic member.

Generated by Doxygen 1.13.1

252 Perl Module Output

- doc => ClassPublicMemberDetailedDoc (doc). Detailed documentation for the
public member.

- see => ClassPublicMemberSee (doc). "See also" documentation for the public
member.

- kind => ClassPublicMemberKind (string). Kind of public member (usually "variable").
- name => ClassPublicMemberName (string). Name of the public member.
- type => ClassPublicMemberType (string). Data type of the public member.
- private_methods => ClassPrivateMethods (hash). Information about the private methods in
the class.
- members => ClassPrivateMethodList (list). private method list.
- ClassPrivateMethod (hash). A private method.
- parameters => ClassPrivateMethodParams (list). List of the parameters of the private
method.
- ClassPrivateMethodParam (hash). A parameter of the private method.
- declaration_name => ClassPrivateMethodParamName (string). The name of
the parameter.

- type => ClassPrivateMethodParamType (string). The data type of the parame-
ter.

- protection => ClassPrivateMethodProtection (string). Protection of the private
method.

- virtualness => ClassPrivateMethodVirtualness (string). Virtualness of the private
method.

- detailed => ClassPrivateMethodDetailed (hash). Detailed information about the pri-
vate method.

- params => ClassPrivateMethodPDBIlocks (list). List of parameter documentation
blocks for the private method.

- ClassPrivateMethodPDBIlock (hash). A parameter documentation block for the
private method.

- parameters => ClassPrivateMethodPDParams (list). Parameter list for this
parameter documentation block.

- ClassPrivateMethodPDParam (hash). A parameter documented by this
documentation block.

- name => ClassPrivateMethodPDParamName (string). Name of the pa-
rameter.

- doc => ClassPrivateMethodPDDoc (doc). Documentation for this parameter
documentation block.

- doc => ClassPrivateMethodDetailedDoc (doc). Detailed documentation for the
private method.

- see => ClassPrivateMethodSee (doc). "See also" documentation for the private
method.

- return => ClassPrivateMethodReturn (doc). Documentation about the return value
of the private method.

- kind => ClassPrivateMethodKind (string). Kind of private method (usually "function").
- name => ClassPrivateMethodName (siring). Name of the private method.

- type => ClassPrivateMethodType (string). Data type returned by the private method.
- static => ClassPrivateMethodStatic (siring). Whether the private method is static.

- public_methods => ClassPublicMethods (hash). Information about the public methods in the
class.

- members => ClassPublicMethodList (/ist). public method list.
- ClassPublicMethod (hash). A public method.

- parameters => ClassPublicMethodParams (list). List of the parameters of the public
method.

- ClassPublicMethodParam (hash). A parameter of the public method.

Generated by Doxygen 1.13.1

30.5 Perl Module Tree Nodes 253

- declaration_name => ClassPublicMethodParamName (string). The name of the
parameter.

- type => ClassPublicMethodParamType (string). The data type of the parameter.
- protection => ClassPublicMethodProtection (string). Protection of the public

method.

- virtualness => ClassPublicMethodVirtualness (string). Virtualness of the public
method.

- detailed => ClassPublicMethodDetailed (hash). Detailed information about the pub-
lic method.

- params => ClassPublicMethodPDBlocks (list). List of parameter documentation
blocks for the public method.

- ClassPublicMethodPDBIlock (hash). A parameter documentation block for the
public method.

- parameters => ClassPublicMethodPDParams (list). Parameter list for this
parameter documentation block.

- ClassPublicMethodPDParam (hash). A parameter documented by this doc-
umentation block.

- name => ClassPublicMethodPDParamName (string). Name of the pa-
rameter.

- doc => ClassPublicMethodPDDoc (doc). Documentation for this parameter
documentation block.

- doc => ClassPublicMethodDetailedDoc (doc). Detailed documentation for the
public method.

- see => ClassPublicMethodSee (doc). "See also" documentation for the public
method.

- return => ClassPublicMethodReturn (doc). Documentation about the return value
of the public method.

- kind => ClassPublicMethodKind (string). Kind of public method (usually "function").
- name => ClassPublicMethodName (string). Name of the public method.

- type => ClassPublicMethodType (string). Data type returned by the public method.
- static => ClassPublicMethodStatic (string). Whether the public method is static.

— files => Files (list). Documented files.

= File (hash). A documented file.

- detailed => FileDetailed (hash). Detailed information about the file.

- doc => FileDetailedDoc (doc). Detailed documentation block for the file.
- functions => FileFunctions (hash). Information about the functions in the file.

- members => FileFunctionList (list). function list.

- FileFunction (hash). A function.
- parameters => FileFunctionParams (list). List of the parameters of the function.
- FileFunctionParam (hash). A parameter of the function.

- declaration_name => FileFunctionParamName (string). The name of the pa-
rameter.

- type => FileFunctionParamType (string). The data type of the parameter.
- protection => FileFunctionProtection (string). Protection of the function.
- virtualness => FileFunctionVirtualness (string). Virtualness of the function.
- detailed => FileFunctionDetailed (hash). Detailed information about the function.

- params => FileFunctionPDBlocks (/ist). List of parameter documentation blocks
for the function.

- FileFunctionPDBlock (hash). A parameter documentation block for the function.
- parameters => FileFunctionPDParams (list). Parameter list for this parameter
documentation block.
- FileFunctionPDParam (hash). A parameter documented by this documen-
tation block.

Generated by Doxygen 1.13.1

254 Perl Module Output

- name => FileFunctionPDParamName (string). Name of the parameter.
- doc => FileFunctionPDDoc (doc). Documentation for this parameter docu-
mentation block.
- doc => FileFunctionDetailedDoc (doc). Detailed documentation for the function.
- see => FileFunctionSee (doc). "See also" documentation for the function.
- return => FileFunctionReturn (doc). Documentation about the return value of the
function.
- kind => FileFunctionKind (string). Kind of function (usually "function”).
- name => FileFunctionName (string). Name of the function.
- type => FileFunctionType (string). Data type returned by the function.
- static => FileFunctionStatic (string). Whether the function is static.
- name => FileName (string). Name of the file.
- variables => FileVariables (hash). Information about the variables in the file.
- members => FileVariableList (list). variable list.
- FileVariable (hash). A variable.
- protection => FileVariableProtection (string). Protection of the variable.
- detailed => FileVariableDetailed (hash). Detailed information about the variable.
- doc => FileVariableDetailedDoc (doc). Detailed documentation for the variable.
- see => FileVariableSee (doc). "See also" documentation for the variable.
- kind => FileVariableKind (string). Kind of variable (usually "variable").
- name => FileVariableName (string). Name of the variable.
- type => FileVariableType (string). Data type of the variable.
- typedefs => FileTypedefs (hash). Information about the typedefs in the file.
- members => FileTypedefList (list). typedef list.
- FileTypedef (hash). A typedef.
- protection => FileTypedefProtection (string). Protection of the typedef.
- detailed => FileTypedefDetailed (hash). Detailed information about the typedef.
- doc => FileTypedefDetailedDoc (doc). Detailed documentation for the typedef.
- see => FileTypedefSee (doc). "See also" documentation for the typedef.
- kind => FileTypedefKind (string). Kind of typedef (usually "typedef").
- name => FileTypedefName (string). Name of the typedef.
- type => FileTypedefType (string). Data type of the typedef.

Generated by Doxygen 1.13.1

Chapter 31

Doxygen's Internals

Doxygen's internals

Note that this section is still under construction!
The following picture shows how source files are processed by Doxygen.

config file

Config parser

input files

drives

Language parser Data organiser

drives

drivt7’

Doc Parser

tag file parser

Source Parser -
drives

Figure 31.1: Data flow overview
The following sections explain the steps above in more detail.

Config parser

The configuration file that controls the settings of a project is parsed and the settings are stored in the singleton
class Configin src/config.h. The parser itself is written using f 1ex and can be found in src/config. 1.
This parser is also used directly by Doxywizard, so it is put in a separate library.

Each configuration option has one of 5 possible types: String, List, Enum, Int, or Bool. The values of these
options are available through the global functions Config_getXXX (), where XXX is the type of the option. The
argument of these functions is a string naming the option as it appears in the configuration file. For instance«
: Config_getBool (GENERATE_TESTLIST) returns a reference to a boolean value that is TRUE if the test
list was enabled in the configuration file.

Generated by Doxygen 1.13.1

256 Doxygen's Internals

The function readConfiguration () in src/doxygen. cpp reads the command line options and then calls
the configuration parser.

C Preprocessor

The input files mentioned in the configuration file are (by default) fed to the C Preprocessor (after being piped
through a user defined filter if available).

The way the preprocessor works differs somewhat from a standard C Preprocessor. By default it does not do macro
expansion, although it can be configured to expand all macros. Typical usage is to only expand a user specified set
of macros. This is to allow macro names to appear in the type of function parameters for instance.

Another difference is that the preprocessor parses, but not actually includes code when it encounters a #include
(with the exception of #include found inside { ... } blocks). The reasons behind this deviation from the standard
is to prevent feeding multiple definitions of the same functions/classes to Doxygen's parser. If all source files would
include a common header file for instance, the class and type definitions (and their documentation) would be present
in each translation unit.

The preprocessor is written using £ 1ex and can be found in src/pre. 1. For condition blocks (# i f) evaluation of
constant expressions is needed. For this a yacc based parser is used, which can be found in src/constexp.y
and src/constexp. 1.

The preprocessor is invoked for each file using the preprocessFile () function declared in src/pre.h, and
will append the preprocessed result to a character buffer. The format of the character buffer is

0x06 file name 1
0x06 preprocessed contents of file 1

0x06 file name n
0x06 preprocessed contents of file n

Language parser

The preprocessed input buffer is fed to the language parser, which is implemented as a big state machine using
flex. It can be found in the file src/scanner. 1. There is one parser for all languages (C/C++/Java/IDL). The
state variables insideIDL and insideJava are uses at some places for language specific choices.

The task of the parser is to convert the input buffer into a tree of entries (basically an abstract syntax tree). An entry
is defined in src/entry.h andis a blob of loosely structured information. The most important field is section
which specifies the kind of information contained in the entry.

Possible improvements for future versions:

» Use one scanner/parser per language instead of one big scanner.
* Move the first pass parsing of documentation blocks to a separate module.

» Parse defines (these are currently gathered by the preprocessor, and ignored by the language parser).

Data organizer

This step consists of many smaller steps, that build dictionaries of the extracted classes, files, namespaces, vari-
ables, functions, packages, pages, and groups. Besides building dictionaries, during this step relations (such as
inheritance relations), between the extracted entities are computed.

Each step has a function defined in src/doxygen.cpp, which operates on the tree of entries, built during
language parsing. Look at the "Gathering information" part of parseInput () for details.

The result of this step is a number of dictionaries, which can be found in the Doxygen "namespace” defined in
src/doxygen.h. Most elements of these dictionaries are derived from the class Definition; The class
MemberDef, for instance, holds all information for a member. An instance of such a class can be part of a file (
class FileDef), aclass (class ClassDef), a namespace (class NamespaceDef), a group (class Group+«
Def), or a Java package (class PackageDef).

Tag file parser

If tag files are specified in the configuration file, these are parsed by a SAX based XML parser, which can be found
in src/tagreader.cpp. The result of parsing a tag file is the insertion of Ent ry objects in the entry tree. The
field Entry: :tagInfo is used to mark the entry as external, and holds information about the tag file.

Generated by Doxygen 1.13.1

257

Documentation parser

Special comment blocks are stored as strings in the entities that they document. There is a string for the brief
description and a string for the detailed description. The documentation parser reads these strings and executes
the commands it finds in it (this is the second pass in parsing the documentation). It writes the result directly to the
output generators.

The parser is written in C++ and can be found in src/docparser. cpp. The tokens that are eaten by the parser
come from src/doctokenizer. 1. Code fragments found in the comment blocks are passed on to the source
parser.

The main entry point for the documentation parseris validat ingParseDoc () declaredin src/docparser.+
h. For simple texts with special commands validatingParseText () is used.

Source parser

If source browsing is enabled or if code fragments are encountered in the documentation, the source parser is
invoked.

The code parser tries to cross-reference to source code it parses with documented entities. It also does syntax
highlighting of the sources. The output is directly written to the output generators.

The main entry point for the code parser is parseCode () declared in src/code.h.

Output generators

After data is gathered and cross-referenced, Doxygen generates output in various formats. For this it uses the
methods provided by the abstract class OutputGenerator. In order to generate output for multiple formats at
once, the methods of OutputList are called instead. This class maintains a list of concrete output generators,
where each method called is delegated to all generators in the list.

To allow small deviations in what is written to the output for each concrete output generator, it is possible to tem-
porarily disable certain generators. The OutputList class contains various disable () and enable () methods
for this. The methods OutputList: :pushGeneratorState () and OutputList: :popGenerator«
State () are used to temporarily save the set of enabled/disabled output generators on a stack.

The XML is generated directly from the gathered data structures. In the future XML will be used as an intermediate
language (IL). The output generators will then use this IL as a starting point to generate the specific output formats.
The advantage of having an IL is that various independently developed tools written in various languages, could
extract information from the XML output. Possible tools could be:

* an interactive source browser
* aclass diagram generator

» computing code metrics.

Debugging

Since Doxygen uses a lot of £ 1ex code it is important to understand how f 1ex works (for this one should read the
man page) and to understand what it is doing when flex is parsing some input. Fortunately, when £lex is used
with the —d option it outputs what rules matched. This makes it quite easy to follow what is going on for a particular
input fragment.

To make it easier to toggle debug information for a given £1ex file | wrote the following per1 script, which auto-
matically adds or removes —d from the correct line in the Makefile:

#!/usr/bin/perl

$file = shift QARGV;

print "Toggle debugging mode for $file\n";

if (!-e "../src/S${file}.1")

{
print STDERR "Error: file ../src/${file}.l does not exist!\n";
exit 1;

}

system("touch ../src/S${file}.1");

unless (rename "src/CMakeFiles/doxymain.dir/build.make","src/CMakeFiles/doxymain.dir/build.make.old") {
print STDERR "Error: cannot rename src/CMakeFiles/doxymain.dir/build.make!\n";
exit 1;

Generated by Doxygen 1.13.1

258 Doxygen's Internals

}
if (open(F,"<src/CMakeFiles/doxymain.dir/build.make.old")) {

unless (open (G, ">src/CMakeFiles/doxymain.dir/build.make")) {
print STDERR "Error: opening file build.make for writing\n";
exit 1;

}

print "Processing build.make...\n";

while (<F>) {
if (s/flex \$\ (LEX_FLAGS\) -d(.x) ${file}.l/flex \S$(LEX_FLAGS)S$1 ${file}.1l/) {
print "Disabling debug info for $file\n";
}
elsif (s/flex \$\(LEX_FLAGS\) (.x) S${file}.l$/flex \$(LEX_FLAGS) -d$1 ${file}.l/) {
print "Enabling debug info for $file.l\n";
}
print G "$_";
}
close F;
unlink "src/CMakeFiles/doxymain.dir/build.make.old";
}

else {
print STDERR "Warning file src/CMakeFiles/doxymain.dir/build.make does not exist!\n";

}

touch the file
Snow = time;
utime Snow, Snow, S$file;

Another way to get rules matching / debugging information from the £1ex code is setting LEX_FLAGS with make
(make LEX_FLAGS=-d).

By default a debug version of Doxygen (i.e. an executable created with the CMake setting ~-DCMAKE_BUILD_«
TYPE=Debug) will automatically have the f1ex debugging information for all flex codefiles.

Note that by running Doxygen with —~d 1ex you getinformation about which f1ex codefileisused. To see the
information of the flex parser, which is compiled with the flex debug option, you have to specify -d lex:<flex
codefile> when running Doxygen.

Note that the information with respect to the lex parsing goes to stderr and that the other debug output goes by
default to stdout unless one uses —~d stderr.

Testing

Doxygen has a small set of tests available to test, some, code integrity. The tests can be run by means of
the command make tests. When only one or a few tests are required one can set the variable TEST+«
_FLAGS when running the test e.g. make TEST_FLAGS="--id 5" tests or for multiple tests make
TEST_FLAGS="--id 5 —--id 7" tests. For a full set of possibilities give the command make TEST«
_FLAGS="--help" tests. Itis also possible to specify the TEST_FLAGS as an environment variable (works
also for testing through Visual Studio projects), e.g. setenv TEST_FLAGS "--id 5 —--id 7" and make
tests.

Doxyfile differences

In case one has to communicate through e.g. a forum the configuration settings that are different from the standard
Doxygen configuration file settings one can run the Doxygen command: with the —x option and the name of the
configuration file (default is Doxyfile). The output will be a list of the not default settings (in Doxyfile format).
Alternatively also —x_noenv is possible which is identical to the —x option but without replacing the environment
variables and the CMake type replacement variables.

Generated by Doxygen 1.13.1

Appendices

Appendix A

Autolink Example

A.1 Class Documentation

A.1.1 Autolink_Test Class Reference
Public Types
« enum EType { Val1 , Val2 }

An enum type.

Public Member Functions

 Autolink_Test ()

constructor
» ~Autolink_Test ()

destructor
« void member (int)

A member function.
» void member (int, int)

An overloaded member function.

Protected Attributes

 int var

A member variable.

Detailed Description

Since this documentation block belongs to the class Autolink_Test no link to Autolink_Test is generated.
Two ways to link to a constructor are: Autolink_Test and Autolink_Test().

Links to the destructor are: ~Autolink_Test and ~Autolink_Test().

A link to a member in this class: member().

More specific links to the each of the overloaded members: member(int) and member(int,int).
A link to the variable var.

A link to the global typedef B.

A link to the global enumeration type GlobEnum.

A link to the define ABS(x).

A link to a variable using another text as a link.

A link to the enumeration type EType.

A link to some enumeration values: Val1 and GVali.

And last but not least a link to a file: autolink.cpp.

Generated by Doxygen 1.13.1

262

Autolink Example

See also

Inside a see also section any word is checked, so EType, Val1, GVal1, ~Autolink_Test and member will be

replaced by links in HTML.

Member Enumeration Documentation
EType

enum Autolink_Test::EType
An enum type.
More details

Enumerator

Valli | enum value 1
Val2 | enum value 2

Constructor & Destructor Documentation
Autolink_Test()

Autolink_Test::Autolink_Test ()
constructor
details.

~Autolink_Test()

Autolink_Test::~Autolink_Test ()
destructor
details.

Member Function Documentation
member() [1/2]

void Autolink_Test::member (
int)

A member function.

Details.

member() [2/2]

void Autolink_Test::member (
int ,
int)
An overloaded member function.
Details

The documentation for this class was generated from the following file:

+ autolink.cpp

A.2 File Documentation

A.2.1 autolink.cpp File Reference
Classes

« class Autolink_Test

Generated by Doxygen 1.13.1

A.2 File Documentation 263

Macros

+ #define ABS(x)

Typedefs
« typedef Autolink_Test B

Enumerations

« enum GlobEnum { GVal1 , GVal2 }

Variables

+ int globVar

Detailed Description

Testing automatic link generation.

A link to a member of the Autolink_Test class: Autolink_Test::member,

More specific links to the each of the overloaded members: Autolink_Test::member(int) and Autolink_Test::member(int,int)
A link to a protected member variable of Autolink_Test: Autolink_Test::var,

A link to the global enumeration type GlobEnum.

A link to the define ABS(x).

A link to the destructor of the Autolink_Test class: Autolink_Test::~Autolink_Test,

A link to the typedef B.

A link to the enumeration type Autolink_Test::EType

A link to some enumeration values Autolink_Test::Vall and GVal2

Macro Definition Documentation

ABS

#define ABS(

X)
Value:
(((x)>0)?(x) 1= (x))
A macro definition.

Typedef Documentation

B

typedef Autolink_Test B

A type definition.

Enumeration Type Documentation

GlobEnum

enum GlobEnum
A global enum.

Enumerator

GVal1l | global enum value 1

GVal2 | global enum value 2

Generated by Doxygen 1.13.1

264

Autolink Example

Variable Documentation
globVar

int globVar
A global variable.

Generated by Doxygen 1.13.1

Appendix B

Resolving Typedef Example

B.1 Class Documentation

B.1.1 CoordStruct Struct Reference
Public Attributes

« float x

* floaty
Detailed Description

A coordinate pair.

Member Data Documentation
X

float CoordStruct::x
The x coordinate

y

float CoordStruct::y
The y coordinate
The documentation for this struct was generated from the following file:

* restypedef.cpp

B.2 File Documentation

B.2.1 restypedef.cpp File Reference
Classes

« struct CoordStruct

Typedefs
+ typedef CoordStruct Coord

Functions

+ Coord add (Coord c1, Coord c2)

Generated by Doxygen 1.13.1

266

Resolving Typedef Example

Detailed Description

An example of resolving typedefs.

Typedef Documentation

Coord

typedef CoordStruct Coord
Creates a type name for CoordStruct
Function Documentation

add()

Coord add (
Coord ci,
Coord c2)

This function returns the addition of ¢ and c2, i.e: (c1.x+c2.x,c1.y+c2.y)

Generated by Doxygen 1.13.1

Appendix C

Diagrams Example

C.1 Class Documentation

C.1.1 A Class Reference

#include <diagrams_a.h>
Inheritance diagram for A:

Collaboration diagram for A:

Public Attributes

« Axm_self

Generated by Doxygen 1.13.1

268 Diagrams Example

Member Data Documentation
m_self

Ax A::m_self
The documentation for this class was generated from the following file:

+ diagrams_a.h

C.1.2 B Class Reference

#include <diagrams_b.h>
Inheritance diagram for B:

O

Collaboration diagram for B:

Y

- = P>

Public Attributes

* Axm_a

Member Data Documentation
m_a

Ax B::m_a
The documentation for this class was generated from the following file:

Generated by Doxygen 1.13.1

C.1 Class Documentation 269

 diagrams_b.h

C.1.3 C Class Reference

#include <diagrams_c.h>
Inheritance diagram for C:

Collaboration diagram for C:

Public Attributes

*Dxm.d

Public Attributes inherited from A

* A xm_self

Member Data Documentation
m_d

Dx C::m_d
The documentation for this class was generated from the following file:

Generated by Doxygen 1.13.1

270

Diagrams Example

« diagrams_c.h

C.1.4 D Class Reference

#include <diagrams_d.h>
Inheritance diagram for D:

Collaboration diagram for D:

3

- - >

Public Attributes

+Cmc

Generated by Doxygen 1.13.1

C.1 Class Documentation

271

Additional Inherited Members
Protected Attributes inherited from A

* A xm_self

Member Data Documentation
m_c

C D::m_c

The documentation for this class was generated from the following file:

+ diagrams_d.h

C.1.5 E Class Reference

#include <diagrams_e.h>
Inheritance diagram for E:

Generated by Doxygen 1.13.1

272 Diagrams Example

Collaboration diagram for E:

A [
|
|
B
D
RN
\ \
\\\‘
E 1 C

Additional Inherited Members
Public Attributes inherited from D

«Cmc
Protected Attributes inherited from A
* A xm_self

The documentation for this class was generated from the following file:

+ diagrams_e.h

Generated by Doxygen 1.13.1

C.2 File Documentation 273

C.2 File Documentation

C.2.1 diagrams_a.h File Reference

This graph shows which files directly or indirectly include this file:

diagrams_d.h

diagrams_e.h

Classes

* class A

C.2.2 diagrams_a.h

Go to the documentation of this file.

00001 #ifndef DIAGRAMS_A_H

00002 #define DIAGRAMS_A_H

00003 class A { public: A *m_self; };
00004 #endif

C.2.3 diagrams_b.h File Reference

This graph shows which files directly or indirectly include this file:

diagrams_d.h

diagrams_e.h

Generated by Doxygen 1.13.1

274 Diagrams Example

Classes

» class B

C.2.4 diagrams_b.h

Go to the documentation of this file.

00001 #ifndef DIAGRAMS_B_H

00002 #define DIAGRAMS_B_H

00003 class A;

00004 class B { public: A *m_a; };
00005 #endif

C.2.5 diagrams_c.h File Reference

#include "diagrams_c.h"
Include dependency graph for diagrams_c.h:

This graph shows which files directly or indirectly include this file:

Classes

* class C

C.2.6 diagrams_c.h

Go to the documentation of this file.

00001 #ifndef DIAGRAMS_C_H

00002 #define DIAGRAMS_C_H

00003 #include "diagrams_c.h"

00004 class D;

00005 class C : public A { public: D *m_d; };
00006 #endif

C.2.7 diagrams_d.h File Reference

#include "diagrams_a.h"
#include "diagrams_pb.h"

Generated by Doxygen 1.13.1

C.2 File Documentation 275

Include dependency graph for diagrams_d.h:

diagrams_a.h diagrams_b.h

This graph shows which files directly or indirectly include this file:

diagrams_e.h

Classes

» class D

C.2.8 diagrams_d.h

Go to the documentation of this file.

00001 #ifndef DIAGRAM_D_H

00002 #define DIAGRAM_D_H

00003 #include "diagrams_a.h"

00004 #include "diagrams_b.h"

00005 class C;

00006 class D : virtual protected A, private B { public: C m_c; };
00007 #endif

Generated by Doxygen 1.13.1

276

Diagrams Example

C.2.9 diagrams_e.h File Reference

#include "diagrams_d.h"

Include dependency graph for diagrams_e.h:

Classes

class E

C.2.10 diagrams_e.h

Go to the documentation of this file.

00001
00002
00003
00004
00005

#ifndef DIAGRAM_E_H
#define DIAGRAM_E_H

#include "diagrams_d.h"
class E :

#endif

public D {};

diagrams_d.h

diagrams_a.h

diagrams_b.h

Generated by Doxygen 1.13.1

Appendix D

Grouping Example

D.1 Topic Documentation

D.1.1 The First Group

This is the first group.

Namespaces

* namespace N1

namespace N1 is in four groups

Classes

» class C1

class C1in group 1
* class C2

class C2 in group 1

Functions

+ void func ()

function in group 1
+ void func2 ()

another function in group 1
+ void func3 ()

yet another function in group 1
Detailed Description
This is the first group.

More documentation for the first group.

D.1.2 The Second Group

This is the second group.

Namespaces

* namespace N1

namespace N1 is in four groups

Generated by Doxygen 1.13.1

278

Grouping Example

Classes

» class C3

class C3 in group 2
* class C4

class C4 in group 2

Detailed Description

This is the second group.

D.1.3 The Third Group
This is the third group.

Topics

» The Fourth Group

Group 4 is a subgroup of group 3.

Files

« file group.cpp
this file in group 3

Namespaces

* namespace N1

namespace N1 is in four groups

Classes

+ class C5
class C5 in the third group.

Detailed Description

This is the third group.

The Fourth Group

Group 4 is a subgroup of group 3.

Namespaces

* namespace N1
namespace N1 is in four groups

Detailed Description

Group 4 is a subgroup of group 3.

D.1.4 The Fifth Group

This is the fifth group.
This is the fifth group.

Generated by Doxygen 1.13.1

D.2 Namespace Documentation

279

This is a section in group 5

This is another section in group 5
D.2 Namespace Documentation
D.2.1 N1 Namespace Reference

namespace N1 is in four groups

Detailed Description
namespace N1 is in four groups

See also

The first group, The Second Group, The Third Group, The Fourth Group

Also see This is another section in group 5

D.3 Class Documentation

D.3.1 C1 Class Reference

class C1 in group 1

Detailed Description

class C1 in group 1

The documentation for this class was generated from the following file:

* group.cpp

D.3.2 C2 Class Reference

class C2 in group 1

Detailed Description

class C2 in group 1

The documentation for this class was generated from the following file:

* group.cpp

D.3.3 C3 Class Reference

class C3in group 2

Detailed Description

class C3in group 2

The documentation for this class was generated from the following file:

* group.cpp

D.3.4 C4 Class Reference

class C4 in group 2

Generated by Doxygen 1.13.1

280

Grouping Example

Detailed Description

class C4 in group 2

The documentation for this class was generated from the following file:

* group.cpp

D.3.5 C5 Class Reference

class C5 in the third group.

Detailed Description

class C5 in the third group.

The documentation for this class was generated from the following file:

* group.cpp

D.4 File Documentation

D.4.1 group.cpp File Reference
this file in group 3

Classes

 class C1

class C1 in group 1
* class C2

class C2in group 1
* class C3

class C3 in group 2
* class C4

class C4 in group 2
* class C5

class C5 in the third group.

Namespaces

* namespace N1

namespace N1 is in four groups

Functions

« void func ()

function in group 1
+ void func2 ()

another function in group 1
« void func3 ()

yet another function in group 1

Detailed Description

this file in group 3

Generated by Doxygen 1.13.1

Appendix E

Member Groups Example

E.1 Class Documentation

E.1.1 Memgrp_Test Class Reference

A class.

Public Member Functions

« void ungroupedFunction ()

Function without group.

« void func1InGroup1 ()

Same documentation for both members.
« void func2InGroup1 ()

Same documentation for both members.

Group2
Description of group 2.

+ void func1InGroup2 ()

Function 1 in group 2.
+ void func2InGroup2 ()

Function 2 in group 2.

Detailed Description

A class.

Details

Member Function Documentation
func1InGroup1()

void Memgrp_Test::funclInGroupl ()
Same documentation for both members.
Details

func1inGroup2()

void Memgrp_Test::funclInGroup2 ()
Function 1 in group 2.
Details.

Generated by Doxygen 1.13.1

282

Member Groups Example

func2InGroup1()

void Memgrp_Test::func2InGroupl ()
Same documentation for both members.
Details

func2InGroup2()

void Memgrp_Test::func2InGroup2 ()
Function 2 in group 2.
Details.

ungroupedFunction()

[protected]

void Memgrp_Test::ungroupedFunction ()

Function without group.
Details.

The documentation for this class was generated from the following file:

* memgrp.cpp

E.2 File Documentation

E.2.1 memgrp.cpp File Reference

Classes

 class Memgrp_Test

A class.

* #define A1

» #define B2

« void glob_func ()
Detailed Description

docs for this file

Macro Definition Documentation
A

#define A 1

one description for all members of this group (because DISTRIBUTE_GROUP_DOC is YES in the config file)

#define B 2

one description for all members of this group (because DISTRIBUTE_GROUP_DOC is YES in the config file)

Function Documentation
glob_func()

void glob_func ()

one description for all members of this group (because DISTRIBUTE_GROUP_DOC is YES in the config file)

Generated by Doxygen 1.13.1

Appendix F

Style Examples

F.1 After Block Example

F.1.1 Class Documentation
Afterdoc_Test Class Reference

#include <afterdoc.h>

Public Types

« enum EnumType { EVall , EVal2 }
An enum type.

Public Member Functions

+ void member ()

a member function.

Protected Attributes

* int value
Detailed Description A test class
Member Enumeration Documentation

EnumType enum Afterdoc_Test::EnumType
An enum type.
The documentation block cannot be put after the enum!

Enumerator

EVall | enum value 1
EVal2 | enum value 2

Member Data Documentation

value int Afterdoc_Test::value [protected]
an integer value
The documentation for this class was generated from the following file:

« afterdoc.h

Generated by Doxygen 1.13.1

284 Style Examples

F.1.2 File Documentation
afterdoc.h

00001 /! A test class «/

00002

00003 class Afterdoc_Test

00004 {

00005 public:

00006 /*x An enum type.

00007 * The documentation block cannot be put after the enum!
00008 x/

00009 enum EnumType

00010 {

00011 int EVall, /**< enum value 1 x/
00012 int Eval2 /**< enum value 2 =/
00013 }s;

00014 void member () ; //'< a member function.
00015

00016 protected:

00017 int value; /*!< an integer value =/
00018 };

F.2 QT Style Example

F.2.1 Class Documentation
QTstyle_Test Class Reference

A test class.

Public Types
* enum TEnum { TVal1 , TVal2 , TVal3 }

An enum.

Public Member Functions

* QTstyle_Test ()
A constructor.
* ~QTstyle_Test ()
A destructor.
« int testMe (int a, const char xs)

A normal member taking two arguments and returning an integer value.
« virtual void testMeToo (char c1, char c2)=0

A pure virtual member.

Public Attributes

« enum QTstyle_Test::TEnum * enumPtr

Enum pointer.
» enum QTstyle_Test::TEnum enumVar

Enum variable.
« int publicVar

A public variable.
* int(x handler)(int a, int b)

A function variable.

Detailed Description A test class.
A more elaborate class description.

Member Enumeration Documentation

Generated by Doxygen 1.13.1

F.2 QT Style Example 285

TEnum enum QTstyle_Test::TEnum
An enum.
More detailed enum description.

Enumerator

TVall | Enum value TVall.
TVal2 | Enum value TVal2.
TVal3 | Enum value TVal3.

Constructor & Destructor Documentation

QTstyle_Test() oTstyle_Test::QTstyle_Test ()
A constructor.
A more elaborate description of the constructor.

~QTstyle_Test() oTstyle_Test::~QTstyle_Test ()
A destructor.
A more elaborate description of the destructor.

Member Function Documentation

testMe() int QTstyle_Test::testMe (
int a,
const char x* s)
A normal member taking two arguments and returning an integer value.

Parameters

a | aninteger argument.

a constant character pointer.

Returns

The test results

See also

QTstyle_Test(), ~QTstyle_Test(), testMeToo() and publicVar()

testMeToo() virtual void QTstyle_Test::testMeToo (
char ciI,
char c2) [pure virtual]

A pure virtual member.

See also

testMe()

Parameters

c1 | the first argument.

c2 | the second argument.

Generated by Doxygen 1.13.1

286

Style Examples

Member Data Documentation

enumPtr enum QTstyle_Test::TEnum % QTstyle_Test::enumPtr
Enum pointer.
Details.

enumVar enum QTstyle_Test::TEnum QTstyle_Test::enumvVar
Enum variable.
Details.

handler int (x+ QTstyle_Test::handler) (int a, int b)
A function variable.
Details.

publicVar int QTstyle_Test::publicVar

A public variable.

Details.

The documentation for this class was generated from the following file:

* qtstyle.cpp

F.3 Javadoc Style Example

F.3.1 Class Documentation
Javadoc_Test Class Reference

A test class.

Public Types
* enum TEnum { TVal1 , TVal2 , TVal3 }

An enum.

Public Member Functions

» Javadoc_Test ()
A constructor.
» ~Javadoc_Test ()
A destructor.
* int testMe (int a, const char xs)

a normal member taking two arguments and returning an integer value.

« virtual void testMeToo (char c1, char c2)=0

A pure virtual member.

Public Attributes

* enum Javadoc_Test::TEnum *x enumPtr

enum pointer.
« enum Javadoc_Test::TEnum enumVar

enum variable.
* int publicVar

a public variable.
* int(x handler)(int a, int b)

a function variable.

Generated by Doxygen 1.13.1

F.3 Javadoc Style Example

287

Detailed Description A test class.
A more elaborate class description.

Member Enumeration Documentation

TEnum

An enum.
More detailed enum description.

enum Javadoc_Test::TEnum

Enumerator
TVall | enum value TVali.
TVal2 | enum value TVal2.
TVal3 | enum value TVal3.

Constructor & Destructor Documentation

Javadoc_Test() Javadoc_Test::Javadoc_Test ()

A constructor.

A more elaborate description of the constructor.

~Javadoc_Test() Javadoc_Test: :~Javadoc_Test ()

A destructor.

A more elaborate description of the destructor.

Member Function Documentation

testMe()

a normal member taking two arguments and returning an integer value.

int a,

int Javadoc_Test::testMe (

const char * s)

Parameters

a

an integer argument.

a constant character pointer.

See also

Javadoc_Test()
~Javadoc_Test()
testMeToo()
publicVar()

Returns

testMeToo() virtual void Javadoc_Test::testMeToo (

The test results

char cI,

char c2)

A pure virtual member.

See also

testMe()

[pure virtual]

Generated by Doxygen 1.13.1

288 Style Examples

Parameters

c1 | the first argument.

c2 | the second argument.

Member Data Documentation

enumPtr enum Javadoc_Test::TEnum # Javadoc_Test: :enumPtr
enum pointer.
Details.

enumVar enum Javadoc_Test::TEnum Javadoc_Test::enumvVar
enum variable.
Details.

handler int (x+ Javadoc_Test::handler) (int a, int b)
a function variable.
Details.

publicVar int Javadoc_Test::publicvar

a public variable.

Details.

The documentation for this class was generated from the following file:

* jdstyle.cpp

F.4 Javadoc Banner Example

F.4.1 File Documentation
javadoc-banner.h File Reference
Functions

+ void cstyle (int theory)

A brief history of JavaDoc-style (C-style) comments.
+ void javadocBanner (int theory)

A brief history of JavaDoc-style (C-style) banner comments.
+ void doxygenBanner (int theory)

A brief history of Doxygen-style banner comments.
Function Documentation

cstyle() void cstyle ¢
int theory)
A brief history of JavaDoc-style (C-style) comments.
This is the typical JavaDoc-style C-style comment. It starts with two asterisks.

Parameters

‘ theory ‘ Even if there is only one possible unified theory. it is just a set of rules and equations.

Generated by Doxygen 1.13.1

F.4 Javadoc Banner Example 289

doxygenBanner() void doxygenBanner (

int theory)
A brief history of Doxygen-style banner comments.
This is a Doxygen-style C-style "banner" comment. It starts with a "normal" comment and is then converted to a
"special" comment block near the end of the first line. It is written this way to be more "visible" to developers who
are reading the source code. This style of commenting behaves poorly with clang-format.

Parameters

‘ theory ‘ Even if there is only one possible unified theory. it is just a set of rules and equations.

javadocBanner() void javadocBanner (
int theory)
A brief history of JavaDoc-style (C-style) banner comments.
This is the typical JavaDoc-style C-style "banner" comment. It starts with a forward slash followed by some number,
n, of asterisks, where n > 2. It's written this way to be more "visible" to developers who are reading the source
code.
Often, developers are unaware that this is not (by default) a valid Doxygen comment block!
However, as long as JAVADOC_BANNER = YES is added to the Doxyfile, it will work as expected.
This style of commenting behaves well with clang-format.

Parameters

‘ theory ‘ Even if there is only one possible unified theory. it is just a set of rules and equations.

javadoc-banner.h

Go to the documentation of this file.

00001 /=%

00002 =+ A brief history of JavaDoc-style (C-style) comments.

00003

00004 «+ This is the typical JavaDoc-style C-style comment. It starts with two
00005 =« asterisks.

00006 =«

00007 «* @param theory Even if there is only one possible unified theory. it is just a
00008 set of rules and equations.

00009 =/

00010 void cstyle(int theory);

00011

Q0012 /[kokokkokokok kkok ok ok ok ok Kk ok ok ok ok ok ok & ok ok ok ok ok ok Kk ok ok kK ok ok ok Kk ok kK ok ok Kk ok ok kK ok ok kK ok ok K ok ok K ok ok kK ok ok Kk ok Kk ko

00013 « A brief history of JavaDoc-style (C-style) banner comments.

00014 =«

00015 «+ This is the typical JavaDoc-style C-style "banner" comment. It starts with
00016 =+ a forward slash followed by some number, n, of asterisks, where n > 2. It’s
00017 =« written this way to be more "visible" to developers who are reading the

00018 =« source code.

00019 =«

00020 «+ Often, developers are unaware that this is not (by default) a valid Doxygen
00021 * comment block!

00022 «

00023 « However, as long as JAVADOC_BANNER = YES is added to the Doxyfile, it will
00024 «+ work as expected.

00025 «

00026 =+ This style of commenting behaves well with clang-format.

00027 «

00028 « @param theory Even if there is only one possible unified theory. it is just a
00029 =« set of rules and equations.

00030 Kk k ok hkhkkkkhkkkkhk kA kk ok kA ok kh Ak kh kA k kA Ak Kk h Ak kh kA k Kk hkkkhk kA kkhkkkkkkkkhkkkkkhkkkkkkxk/

00031 void javadocBanner (int theory);
00032
00033 /**//**

00034 «+ A brief history of Doxygen-style banner comments.

00035 «

00036 =+ This is a Doxygen-style C-style "banner" comment. It starts with a "normal"
00037 «* comment and is then converted to a "special" comment block near the end of
00038 = the first line. It is written this way to be more "visible" to developers
00039 «+ who are reading the source code.

00040 =« This style of commenting behaves poorly with clang-format.

00041 =«

Generated by Doxygen 1.13.1

290

Style Examples

00042
00043
00044
00045

* @param theory Even if there is only one possible unified theory.
* set of rules and equations.

it is just a

ok ok K K Kk KK K KK KK K K K K K Kk Kk k ok ok ok ok ok ok ok ok ok ok ok ok ok ok o o ok ok Kk Kk K K K K K K K K Kk Kk Kk k ok ok ok ok ok ok ok ok ok ok ok

void doxygenBanner (

int theory);

Generated by Doxygen 1.13.1

Appendix G

Structural Commands Example

G.1 File Documentation

G.1.1 structcmd.h File Reference

A Documented file.

Macros

« #define MAX(a, b)

A macro that returns the maximum of a and b.

Typedefs

« typedef unsigned int UINT32
A type definition for a .

Functions

« int open (const char x, int)
Opens a file descriptor.
* int close (int)
Closes the file descriptor fd.
* size_t write (int, const char %, size_t)
Writes count bytes from buf to the filedescriptor fd.
* intread (int, char *, size_t)
Read bytes from a file descriptor.

Variables

* interrno

Contains the last error code.

Detailed Description

A Documented file.

Details.

Macro Definition Documentation
MAX

#define MAX (
a’
b)

Generated by Doxygen 1.13.1

292 Structural Commands Example

Value:

(((a)>(b))2(a): (b))

A macro that returns the maximum of a and b.
Details.

Typedef Documentation

UINT32

typedef unsigned int UINT32
A type definition for a .

Details.

Function Documentation

close()

int close (
int f£d)
Closes the file descriptor fd.

Parameters

‘ fd ‘ The descriptor to close.

open()

int open (
const char * pathname,
int flags)

Opens a file descriptor.

Parameters

pathname | The name of the descriptor.

flags Opening flags.
read()
int read (
int fd,
char * buf,

size_t count)
Read bytes from a file descriptor.

Parameters

fd The descriptor to read from.
buf The buffer to read into.
count | The number of bytes to read.

Generated by Doxygen 1.13.1

G.1 File Documentation 293

write()

size_t write (
int fd,
const char x buf,
size_t count)
Writes count bytes from bufto the filedescriptor fd.

Parameters

fd The descriptor to write to.
buf The data buffer to write.
count | The number of bytes to write.

Variable Documentation
errno

int errno
Contains the last error code.

Warning

Not thread safe!

G.1.2 structcmd.h

Go to the documentation of this file.
00001 /! \file structcmd.h

00002 \brief A Documented file.

00003

00004 Details.

00005 «/

00006

00007 /! \def MAX(a,b)

00008 \brief A macro that returns the maximum of \a a and \a b.
00009

00010 Details.

00011 =/

00012

00013 /«! \var typedef unsigned int UINT32

00014 \brief A type definition for a

00015

00016 Details.

00017 =/

00018

00019 /! \var int errno

00020 \brief Contains the last error code.

00021

00022 \warning Not thread safe!

00023 */

00024

00025 /«! \fn int open(const char *pathname,int flags)
00026 \brief Opens a file descriptor.

00027

00028 \param pathname The name of the descriptor.
00029 \param flags Opening flags.

00030 =/

00031

00032 /! \fn int close(int fd)

00033 \brief Closes the file descriptor \a fd.
00034 \param fd The descriptor to close.

00035 =/

00036

00037 /=! \fn size_t write(int £fd,const char xbuf, size_t count)
00038 \brief Writes \a count bytes from \a buf to the filedescriptor \a fd.
00039 \param fd The descriptor to write to.

00040 \param buf The data buffer to write.

00041 \param count The number of bytes to write.
00042 */

00043

00044 /! \fn int read(int fd,char xbuf,size_t count)
00045 \brief Read bytes from a file descriptor.
00046 \param fd The descriptor to read from.

Generated by Doxygen 1.13.1

294

Structural Commands Example

00047
00048
00049
00050
00051
00052
00053
00054
00055
00056
00057

\param buf The buffer to read into.

\param count The number of bytes to read.

*/

#define MAX (a,b) (((a)>(b))?(a): (b))

typedef unsigned int UINT32;
int errno;

int open(const char «,int);
int close(int);

size_t write(int,const char *,
int read(int,char =,size_t);

size_t);

Generated by Doxygen 1.13.1

Appendix H

Language Examples

H.1 Python Docstring Example

H.1.1 Namespace Documentation
docstring Namespace Reference
Classes

* class PyClass

Functions

« func ()

Detailed Description

@package docstring
Documentation for this module.

More details.
Function Documentation

func() docstring.func ()
Documentation for a function.

More details.

H.1.2 Class Documentation
docstring.PyClass Class Reference
Public Member Functions

o __init__ (self)

+ PyMethod (self)
Protected Attributes

e int_memVar = 0;

Detailed Description

Documentation for a class.

More details.

Generated by Doxygen 1.13.1

296 Language Examples

Constructor & Destructor Documentation

__init__ () docstring.PyClass.__init__ (
self)

The constructor.
Member Function Documentation

PyMethod() docstring.PyClass.PyMethod (
self)

Documentation for a method.
Member Data Documentation
_memVar int docstring.PyClass._memVar = 0; [protected]

The documentation for this class was generated from the following file:

« docstring.py

H.1.3 File Documentation
docstring.py File Reference
Classes

* class docstring.PyClass

Namespaces

* namespace docstring

Functions

« docstring.func ()

H.2 Python Example

H.2.1 Namespace Documentation
pyexample Namespace Reference

Documentation for this module.

Classes

+ class PyClass

Documentation for a class.

Functions

« func ()

Documentation for a function.

Detailed Description Documentation for this module.
More details.

Function Documentation

Generated by Doxygen 1.13.1

H.3 VHDL Example

297

func() pyexample.func ()
Documentation for a function.
More details.

H.2.2 Class Documentation
pyexample.PyClass Class Reference

Documentation for a class.

Public Member Functions

o __init__ (self)

The constructor.
* PyMethod (self)

Documentation for a method.

Static Public Attributes

* int classVar = 0;

A class variable.

Protected Attributes

* int_memVar = 0;

a member variable

Detailed Description Documentation for a class.
More details.

Member Function Documentation

PyMethod() pyexample.PyClass.PyMethod (
self)
Documentation for a method.

Parameters

‘ self ‘ The object pointer.

The documentation for this class was generated from the following file:

* pyexample.py

H.3 VHDL Example

H.3.1 Design Unit Documentation

mux_using_with Entity Reference

Mux entity brief descriptionDetailed description of this mux design element.

Entities

* mux_using_with.behavior architecture
Architecture definition of the MUX.

Generated by Doxygen 1.13.1

298 Language Examples

Libraries

* ieee

Use standard library.

Use Clauses

+ std_logic_1164

Use logic elements.

Ports

» din_0 in std_logic
Mux first input.

» din_1 in std_logic
Mux Second input.

+ sel in std_logic
Select input.

* mux_out std_logic
Mux output.

Detailed Description Mux entity brief descriptionDetailed description of this mux design element.
The documentation for this design unit was generated from the following file:

e mux.vhdl

mux_using_with.behavior Architecture Reference

Architecture definition of the MUX.
Architecture >> mux_using_with::behavior

Detailed Description Architecture definition of the MUX.
More details about this mux element.
The documentation for this design unit was generated from the following file:

e mux.vhdl

H.3.2 File Documentation
mux.vhdl File Reference

2:1 Mux using with-select

Entities

* mux_using_with entity

Mux entity brief descriptionDetailed description of this mux design element.
* mux_using_with.behavior architecture

Architecture definition of the MUX.

Detailed Description 2:1 Mux using with-select

Generated by Doxygen 1.13.1

Appendix |

Class Example

.1 Class Documentation

.1.1 Test Class Reference

This is a test class.
#include "inc/class.h"

Detailed Description

This is a test class.
Some details about the Test class.
The documentation for this class was generated from the following file:

« class.h

.2 File Documentation

1.2.1 class.h

00001 /% A dummy class x/

00002

00003 class Test

00004 {

00005 };

00006

00007 /+! \class Test class.h "inc/class.h"
00008 * \brief This is a test class.
00009 =«

00010 =« Some details about the Test class.
00011 «x/

Generated by Doxygen 1.13.1

300 Class Example

Generated by Doxygen 1.13.1

Appendix J

Define Example

J.1 File Documentation

J.1.1 define.h File Reference

testing defines

Macros

« #define ABS(x)

Computes the absolute value of its argument x.
* #define MAX(x, y)
« #define MIN(x, y)

Detailed Description

testing defines

This is to test the documentation of defines.
Macro Definition Documentation

ABS

#define ABS (
X)
Value:
(((x)>0) 2 (x) :=(x))
Computes the absolute value of its argument x.

Parameters

‘ X ‘ input value.

Returns

absolute value of x.

MAX

#define MAX(
Xy
y)
Value:
((x)>(y) 2 (x): (y))
Computes the maximum of x and y.

Generated by Doxygen 1.13.1

302 Define Example

MIN

#define MIN (
X’

¥)
Value:

() > (¥) 2 (y) 2 (%))
Computes the minimum of x and y.

J.1.2 define.h

Go to the documentation of this file.

00001 /! \file define.h

00002 \brief testing defines

00003

00004 This is to test the documentation of defines.
00005 =/

00006

00007 /=!

00008 \def MAX(x,y)

00009 Computes the maximum of \a x and \a y.

00010 =/

00011

00012 /=!

00013 \brief Computes the absolute value of its argument \a x.
00014 \param x input value.

00015 \returns absolute value of \a x.

00016 =/

00017 #define ABS (x) (((x)>0)7?(x):—(x)

00018 fdefine MAX(x,vy) ((x)>(y)?(x):(y))

00019 #define MIN(x,y) ((x)>(y)?(y):(x))

00020 /+1< Computes the minimum of \a x and \a y. =/

Generated by Doxygen 1.13.1

Appendix K

Enum Example

K.1 Class Documentation

K.1.1 Enum_Test Class Reference

#include <enum.h>

Public Types

« enum TEnum { Val1 , Val2 }

« enum AnotherEnum { V1, V2}
Detailed Description

The class description.

Member Enumeration Documentation
AnotherEnum

enum Enum_Test::AnotherEnum
Another enum, with inline docs

Enumerator

V1 | value 1
V2 | value 2

TEnum

enum Enum_Test::TEnum

A description of the enum type.

Enumerator

‘ Val1 ‘ The description of the first enum value.

The documentation for this class was generated from the following file:

e enum.h

Generated by Doxygen 1.13.1

304 Enum Example

K.2 File Documentation

K.2.1 enum.h

00001 class Enum_Test

00002 {

00003 public:

00004 enum TEnum { Vall, Val2 };

00005

00006 /*! Another enum, with inline docs */
00007 enum AnotherEnum

00008 {

00009 V1, /*!< value 1 */

00010 V2 /x!< value 2 x/

00011 }i

00012 };

00013

00014 /x! \class Enum_Test

00015 =« The class description.

00016 =/

00017

00018 /«! \enum Enum_Test::TEnum

00019 =+ A description of the enum type.

00020 «/

00021

00022 /«! \var Enum_Test::TEnum Enum_Test::Vall
00023 «+ The description of the first enum value.
00024 «/

Generated by Doxygen 1.13.1

Appendix L

Example Example

L.1 Class Documentation

L.1.1 Example_Test Class Reference

A Example_Test class.

Public Member Functions

+ void example ()

An example member function.

Detailed Description

A Example_Test class.
More details about this class.

Examples

example_test.cpp.

Member Function Documentation
example()

void Example_Test::example ()
An example member function.
More details about this function.

Examples
example_test.cpp.
The documentation for this class was generated from the following file:

+ example.cpp

L.2 Examples

L.2.1 example_test.cpp

This is an example of how to use the Example_Test class.
This is an example of how to use the Example_Test class.More details about this example.

void main ()

{
Example_Test t;
t.example();

}

Generated by Doxygen 1.13.1

306 Example Example

Generated by Doxygen 1.13.1

Appendix M

Extends/Implements Example

M.1 Class Documentation

M.1.1 Car Struct Reference

Car type.
Inheritance diagram for Car:

Vehicle

Protected Attributes

* Vehicle base

Base class.

Protected Attributes inherited from Vehicle

* Object base

Base class.

Additional Inherited Members
Public Member Functions inherited from Vehicle
+ void vehicleStart (Vehicle xobj)
+ void vehicleStop (Vehicle xobj)
Static Public Member Functions inherited from Object
« static Object * objRef (Object xobj)
« static Object * objUnref (Object *obj)
Detailed Description

Car type.
Car class.
The documentation for this struct was generated from the following file:

* manual.c

Generated by Doxygen 1.13.1

308

Extends/Implements Example

M.1.2 Object Struct Reference

Object type.
Inheritance diagram for Object:

Static Public Member Functions

« static Object * objRef (Object *obj)
« static Object * objUnref (Object xobj)

Private Attributes

* int ref

Reference count.

Detailed Description

Object type.

Base object class.

Member Function Documentation
objRef()

static Object * objRef (
Object * obj) [static]
Increments object reference count by one.

objUnref()

static Object * objUnref (
Object * obj) [static]
Decrements object reference count by one.

The documentation for this struct was generated from the following file:

* manual.c

M.1.3 Truck Struct Reference

Truck type.
Inheritance diagram for Truck:

Vehicle

‘ Car | | Truck ‘

Generated by Doxygen 1.13.1

M.1 Class Documentation

309

Protected Attributes

* Vehicle base

Base class.

Protected Attributes inherited from Vehicle

» Object base

Base class.

Additional Inherited Members
Public Member Functions inherited from Vehicle

+ void vehicleStart (Vehicle xobj)
« void vehicleStop (Vehicle xobj)

Static Public Member Functions inherited from Object
« static Object * objRef (Object xobj)
« static Object * objUnref (Object xobj)

Detailed Description

Truck type.
Truck class.

The documentation for this struct was generated from the following file:

e manual.c

M.1.4 Vehicle Struct Reference

Vehicle type.
Inheritance diagram for Vehicle:

Vehicle

| Car | | Truck l

Public Member Functions

+ void vehicleStart (Vehicle xobj)
« void vehicleStop (Vehicle xobj)

Protected Attributes

» Object base

Base class.

Additional Inherited Members
Static Public Member Functions inherited from Object

« static Object * objRef (Object xobj)
« static Object * objUnref (Object xobj)

Generated by Doxygen 1.13.1

310

Extends/Implements Example

Detailed Description

Vehicle type.

Vehicle class.

Member Function Documentation

vehicleStart()

void vehicleStart (
Vehicle * obj)
Starts the vehicle.

vehicleStop()

void vehicleStop (
Vehicle % obj)
Stops the vehicle.

The documentation for this struct was generated from the following file:

* manual.c

M.2 File Documentation

M.2.1 manual.c File Reference

Classes

« struct Object

Object type.
* struct Vehicle

Vehicle type.
« struct Car

Car type.
« struct Truck

Truck type.

Functions

* int main (void)

Function Documentation
main()

int main (
void)
Main function.

Ref vehicleStart(), objRef(), objUnref().

00083 {

00084 Car c;

00085 vehicleStart ((Vehiclex) &c);
00086 }

Generated by Doxygen 1.13.1

Appendix N

File Example

N.1 File Documentation

N.1.1 file.h File Reference

A brief file description.

Variables

+ int globalValue

A global integer value.

Detailed Description

A brief file description.
A more elaborated file description.

Variable Documentation
globalValue

int globalValue [extern]
A global integer value.
More details about this value.

N.1.2 file.h

Go to the documentation of this file.

00001 /** \file file.h

00002 * A brief file description.

00003 * A more elaborated file description.
00004 «/

00005

00006 /*=*

00007 =+ A global integer value.

00008 = More details about this value.
00009 «/

00010 extern int globalValue;

Generated by Doxygen 1.13.1

312 File Example

Generated by Doxygen 1.13.1

Appendix O

Fn Example

0.1 Class Documentation

0.1.1 Fn_Test Class Reference
Fn_Test class.

#include <func.h>

Public Member Functions

« const char * member (char, int) throw (std::out_of range)

A member function.

Detailed Description

Fn_Test class.

Details about Fn_Test.

Member Function Documentation
member()

const char *x Fn_Test::member (

char c,

int n) throw (std::out_of_range)
A member function.

Parameters

¢ | acharacter.
n | aninteger.

Exceptions

std::out_of range | parameter is out of range.

Returns

a character pointer.

The documentation for this class was generated from the following file:

e func.h

Generated by Doxygen 1.13.1

314

Fn Example

0.2

0.2.1

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021

File Documentation

func.h

class Fn_Test

{
public:
const char xmember (char, int) 1row (std::out_of_range);
}i
const char *Fn_Test::member (char c,int n) throw(std::out_of_range)
/! \class Fn_Test

*» \brief Fn_Test class.
*
* Details about Fn_Test.

*/

/! \fn const char *Fn_Test::member (char c,int n)
x \brief A member function.
x \param c a character.
* \param n an integer.
* \exception std::out_of_range parameter is out of range.
x» \return a character pointer.

Generated by Doxygen 1.13.1

Appendix P

Overload Example

P.1 Class Documentation

P.1.1 Overload_Test Class Reference

A short description.

Public Member Functions

« void drawRect (int, int, int, int)
« void drawRect (const Rect &r)

Detailed Description

A short description.
More text.

Member Function Documentation
drawRect() [1/2]

void Overload_Test::drawRect (
int x,
int y,
int w,
int h)
This command draws a rectangle with a left upper corner at (x, y), width w and height h.

drawRect() [2/2]

void Overload_Test::drawRect (
const Rect & r)
This is an overloaded member function, provided for convenience. It differs from the above function only in what
argument(s) it accepts.
The documentation for this class was generated from the following file:

* overload.cpp

Generated by Doxygen 1.13.1

316 Overload Example

Generated by Doxygen 1.13.1

Appendix Q

Page Example

Q.1 A documentation page

Leading text.

Q.1.1 An example section

This page contains the subsections The first subsection and The second subsection. For more info see page
Another page.

The first subsection

Text.

The second subsection

More text.

Q.2 Another page

Even more info.

Generated by Doxygen 1.13.1

318 Page Example

Generated by Doxygen 1.13.1

Appendix R

Relates Example

R.1 Class Documentation

R.1.1 String Class Reference
Friends

« int strcmp (const String &s1, const String &s2)

Related Symbols
(Note that these are not member symbols.)

« void stringDebug ()

Detailed Description

A String class.

Friends And Related Symbol Documentation
strcmp

int strcmp (

const String & sI,

const String & s2) [friend]
Compares two strings.

stringDebug()

void stringDebug () [related]
A string debug function.
The documentation for this class was generated from the following file:

* relates.cpp

Generated by Doxygen 1.13.1

320 Relates Example

Generated by Doxygen 1.13.1

Appendix S

Author Example

S.1 Bug List

Class SomeNiceClass

Not all memory is freed when deleting an object of this class.

S.2 Class Documentation

S.2.1 SomeNiceClass Class Reference

Pretty nice class.

Detailed Description

Pretty nice class.
This class is used to demonstrate a number of section commands.

Author

John Doe
Jan Doe

Version

41a

Date
1990-2011

Precondition
First initialize the system.

Bug Not all memory is freed when deleting an object of this class.

Warning

Improper use can crash your application

Copyright
GNU Public License.
The documentation for this class was generated from the following file:

* author.cpp

Generated by Doxygen 1.13.1

322 Author Example

Generated by Doxygen 1.13.1

Appendix T

Par Example

T.1 Class Documentation

T.1.1 Par_Test Class Reference
Detailed Description

Normal text.

User defined paragraph:

Contents of the paragraph.

New paragraph under the same heading.

Note

This note consists of two paragraphs. This is the first paragraph.

And this is the second paragraph.

More normal text.
The documentation for this class was generated from the following file:

* par.cpp

Generated by Doxygen 1.13.1

324 Par Example

Generated by Doxygen 1.13.1

Appendix U

Include Example

U.1 pag_example

Our main function starts like this:

void main ()

{

First we create an object t of the Include_Test class.
Include_Test t;

Then we call the example member function
t.example();

After that our little test routine ends.

}

U.2 Class Documentation

U.2.1 Include_Test Class Reference
Public Member Functions

+ void example ()

a member function

Detailed Description

A test class.
The documentation for this class was generated from the following file:

* include.cpp

Generated by Doxygen 1.13.1

Index

<|[CDATA[...]]>, 236
, 227

, 227
</BLOCKQUOTE>, 227
</CAPTION>, 227
</CENTER>, 227
</CITE>, 227
</CODE>, 227
</DD>, 227
, 227
</DETAILS>, 227
</DFN>, 227
</DIV>, 227
</DL>, 227
</DT>, 227
, 227
</H1>, 227
</H2>, 227
</H3>, 227
</H4>, 227
</H5>, 227
</H6>, 227

</I>, 227
</INS>, 228
</KBD>, 228
, 228
, 228
</P>, 228
</PRE>, 228
</S>, 228
</SMALL>, 228
, 228
</STRIKE>, 228
, 228
</SUB>, 228
</SUP>, 228
</TABLE>, 228
</TBODY>, 228
</TD>, 228
</TFOOT>, 228
</TH>, 228
</THEAD>, 228
</TR>, 228
</TT>, 228
</U>, 228
, 228
</VAR>, 228
, 227
<BLOCKQUOTE >, 227

, 227
<CAPTION>, 227
<CENTER>, 227
<CITE>, 227
<CODE>, 227
<DD>, 227
, 227
<DETAILS>, 227
<DFN>, 227
<DIV>, 227
<DL>, 227
<DT>, 227
, 227
<H1>, 227
<H2>, 227
<H3>, 227
<H4>, 227
<H5>, 227
<H6>, 227
<HR>, 227

<I>, 227
<INS>, 228
<KBD>, 228
, 228
, 228
<P>, 228
<PRE>, 228
<S>, 228
<SMALL>, 228
, 228
<STRIKE>, 228
, 228
<SUB>, 228
<SUP>, 228
<TABLE>, 228
<TBODY>, 228
<TD>, 228
<TFOOT>, 228
<TH>, 228
<THEAD>, 228
<TR>, 228
<TT>, 228
<U>, 228
, 228
<VAR>, 228
<c>, 235
<code>, 235
<description>, 235
<example>, 235

Generated by Doxygen 1.13.1

INDEX

327

<exception>, 235
<include>, 235
<inheritdoc>, 235
<item>, 235
<list>, 235
<listheader>, 235
<para>, 235
<param>, 235
<paramref>, 235
<permission>, 235
<remarks>, 235
<returns>, 235
<see>, 235
<seealso>, 235
<summary>, 235
<term>, 236
<typeparam>, 236
<typeparamref>, 236
<value>, 236
_init__

docstring.PyClass, 296

_memVar

docstring.PyClass, 296

\l, 224

\<, 224

\>, 224

\--, 225

\---, 225

\., 224

\i;, 225

\=, 224

\?, 224

\@, 223

\#, 224

\$, 224

\%, 224

\&, 224

\~, 223

\\, 223

\|, 225

\a, 211
\addindex, 202
\addtogroup, 173
\anchor, 202
\arg, 211
\attention, 191
\author, 191
\authors, 192
\b, 212

\brief, 192
\bug, 192

\c, 212
\callergraph, 174
\callgraph, 173
\category, 178
\cite, 203
\class, 178
\code, 212

\collaborationgraph, 177
\concept, 179
\cond, 192
\copybrief, 213
\copydetails, 213
\copydoc, 213
\copyright, 193
\date, 193

\def, 179
\defgroup, 179
\deprecated, 195
\details, 195
\diafile, 217

\dir, 179
\directorygraph, 176
\docbookinclude, 211
\docbookonly, 213
\dontinclude, 206
\dot, 213

\dotfile, 216
\doxyconfig, 217
\e, 217

\else, 196

\elseif, 196

\em, 217
\endcode, 218
\endcond, 196
\enddocbookonly, 218
\enddot, 218
\endhtmlonly, 218
\endif, 196
\endinternal, 181
\endlatexonly, 218
\endlink, 203
\endmanonly, 219
\endmsc, 218
\endparblock, 199
\endrtfonly, 219
\endsecreflist, 203
\enduml, 218
\endverbatim, 219
\endxmlonly, 219
\enum, 179
\example, 180
\exception, 196
\extends, 181

\f(, 219

\f), 219

\f$, 219

\f{, 220

\f[, 220

\f], 220

\f}, 220

\file, 181

\fileinfo, 181

\fn, 182
\groupgraph, 177
\headerfile, 182

Generated by Doxygen 1.13.1

328

INDEX

\hidecallergraph, 174
\hidecallgraph, 174
\hidecollaborationgraph, 177
\hidedirectorygraph, 176
\hideenumvalues, 178
\hidegroupgraph, 177
\hideincludedbygraph, 176
\hideincludegraph, 176
\hideinheritancegraph, 177
\hideinitializer, 183
\hideinlinesource, 175
\hiderefby, 175
\hiderefs, 175
\htmlinclude, 210
\htmlonly, 220
\idlexcept, 183

\if, 196

\ifnot, 197

\image, 221
\implements, 183
\important, 197
\include, 206
\includedbygraph, 176
\includedoc, 207
\includegraph, 176
\includelineno, 207
\ingroup, 183
\inheritancegraph, 177
\interface, 184
\internal, 184
\invariant, 198
\latexinclude, 210
\latexonly, 221

\li, 222

\line, 208

\lineinfo, 182

\link, 203

\mainpage, 184
\maninclude, 210
\manonly, 222
\memberof, 184
\module, 186

\msc, 214

\mscfile, 216

\n, 222

\name, 186
\namespace, 186
\noop, 195
\nosubgrouping, 186
\note, 198

\overload, 186

\p, 222

\package, 187

\page, 187

\par, 198

\paragraph, 205
\param, 198
\parblock, 199

\plantumlfile, 218
\post, 199

\pre, 199

\private, 188
\privatesection, 188
\property, 188
\protected, 188
\protectedsection, 188
\protocol, 189
\public, 189
\publicsection, 189
\pure, 189
\qualifier, 178
\raisewarning, 195
\ref, 203

\refitem, 203
\related, 190
\relatedalso, 190
\relates, 189
\relatesalso, 190
\remark, 200
\remarks, 200
\result, 200

\return, 200
\returns, 200
\retval, 200
\rtfinclude, 210
\rtfonly, 223

\sa, 200

\secreflist, 203
\section, 204

\see, 200

\short, 201
\showdate, 193
\showenumvalues, 178
\showinitializer, 190
\showinlinesource, 175
\showrefby, 174
\showrefs, 175
\since, 201

\skip, 208

\skipline, 208
\shippet, 208
\snippetdoc, 209
\snippetlineno, 209
\startuml, 215
\static, 190

\struct, 190
\subpage, 204
\subparagraph, 205
\subsection, 205
\subsubparagraph, 205
\subsubsection, 205
\tableofcontents, 204
\test, 201

\throw, 201

\throws, 201

\todo, 201

Generated by Doxygen 1.13.1

INDEX

329

\tparam, 199

\typedef, 190

\union, 191

\until, 209

\var, 191

\verbatim, 223

\verbinclude, 210

\version, 201

\vhdlflow, 191

\warning, 202

\weakgroup, 191

\xmlinclude, 211

\xmlonly, 223

\xrefitem, 202

~Autolink_Test
Autolink_Test, 262

~Javadoc_Test
Javadoc_Test, 287

~QTstyle_Test
QTstyle_Test, 285

A, 267

m_self, 268

memgrp.cpp, 282
A documentation page, 317
ABBREVIATE_BRIEF, 125
ABS

autolink.cpp, 263

define.h, 301
acknowledgments, 5
add

restypedef.cpp, 266
Additional Documentation, 29
Afterdoc_Test, 283

EnumType, 283

EVall, 283

EVal2, 283

value, 283
ALIASES, 127
ALLEXTERNALS, 162
ALLOW_UNICODE_NAMES, 124
ALPHABETICAL_INDEX, 141
ALWAYS_DETAILED_SEC, 125
Another page, 317
AnotherEnum

Enum_Test, 303
autolink.cpp, 262

ABS, 263

B, 263

GlobEnum, 263

globVar, 264

GVali, 263

GVal2, 263
AUTOLINK_IGNORE_WORDS, 128
AUTOLINK_SUPPORT, 128
Autolink_Test, 261

~Autolink_Test, 262

Autolink_Test, 262

EType, 262

member, 262
Vali1, 262
Val2, 262
Automatic link generation, 65

B, 268

autolink.cpp, 263

m_a, 268

memgrp.cpp, 282
BINARY_TOC, 147
bison, 7, 9
BRIEF_MEMBER_DESC, 125
browser, 14
Bug List, 321
BUILTIN_STL_SUPPORT, 128

C, 269

m_d, 269
C1, 279
C2, 279
C3, 279
C4, 279
C5, 280
CALL_GRAPH, 165
CALLER_GRAPH, 165
Car, 307
CASE_SENSE_NAMES, 131
CHM_FILE, 147
CHM_INDEX_ENCODING, 147
CITE_BIB_FILES, 134
CLANG_ADD_INC_PATHS, 140
CLANG_ASSISTED_PARSING, 140
CLANG_DATABASE_PATH, 141
CLANG_OPTIONS, 140
CLASS_GRAPH, 164
close

structcmd.h, 292
cmake, 7,9
COLLABORATION_GRAPH, 164
COMPACT_LATEX, 153
COMPACT_RTF, 158
Configuration, 121
Coord

restypedef.cpp, 266
CoordStruct, 265

X, 265

y, 265
CPP_CLI_SUPPORT, 128
CREATE_SUBDIRS, 124
CREATE_SUBDIRS_LEVEL, 124
cstyle

javadoc-banner.h, 288
Custom Commands, 87
Customizing the output, 79

D, 270
m_c, 271
define.h, 301
ABS, 301

Generated by Doxygen 1.13.1

330

INDEX

MAX, 301

MIN, 301
DIA_PATH, 167
DIAFILE_DIRS, 167
diagrams_a.h, 273
diagrams_b.h, 273
diagrams_c.h, 274
diagrams_d.h, 274
diagrams_e.h, 276
DIR_GRAPH_MAX_DEPTH, 166
DIRECTORY_GRAPH, 166
DISABLE_INDEX, 149
DISTRIBUTE_GROUP_DOC, 129
Doc++, 5
docbook, 15
DOCBOOK_OUTPUT, 160
DOCSET_BUNDLE_ID, 146
DOCSET_FEEDNAME, 146
DOCSET_FEEDURL, 146
DOCSET_PUBLISHER_ID, 146
DOCSET_PUBLISHER_NAME, 146
docstring, 295

func, 295
docstring.py, 296
docstring.PyClass, 295

__init_, 296

_memVar, 296

PyMethod, 296
Documenting the code, 17
DOT_CLEANUP, 168
DOT_COMMON_ATTR, 163
DOT_EDGE_ATTR, 163
DOT_FONTPATH, 164
DOT_GRAPH_MAX_NODES, 167
DOT_IMAGE_FORMAT, 166
DOT_MULTI_TARGETS, 167
DOT_NODE_ATTR, 163
DOT_NUM_THREADS, 163
DOT_PATH, 166
DOT_UML_DETAILS, 164
DOT_WRAP_THRESHOLD, 165
DOTFILE_DIRS, 166
DOXYFILE_ENCODING, 124
Doxygen usage, 107
Doxygen's Internals, 255
doxygenBanner

javadoc-banner.h, 288
Doxywizard usage, 109
drawRect

Overload_Test, 315

E, 271
ECLIPSE_DOC_ID, 149
Emoji support, 237
ENABLE_PREPROCESSING, 161
ENABLED_SECTIONS, 133
Enum_Test, 303

AnotherEnum, 303

TEnum, 303

V1, 303

V2, 303

Vali1, 303
ENUM_VALUES PER_LINE, 149
enumPtr

Javadoc_Test, 288

QTstyle_Test, 286
EnumType

Afterdoc_Test, 283
enumVar

Javadoc_Test, 288

QTstyle_Test, 286
errno

structcmd.h, 293
EType

Autolink_Test, 262
EVali

Afterdoc_Test, 283
EVal2

Afterdoc_Test, 283
example

Example_Test, 305
EXAMPLE_PATH, 138
EXAMPLE_PATTERNS, 138
EXAMPLE_RECURSIVE, 138
Example_Test, 305

example, 305
EXCLUDE, 137
EXCLUDE_PATTERNS, 137
EXCLUDE_SYMBOLS, 138
EXCLUDE_SYMLINKS, 137
EXPAND_AS DEFINED, 162
EXPAND_ONLY_ PREDEF, 161
EXT_LINKS_IN_WINDOW, 150
EXTENSION_MAPPING, 127
External Indexing and Searching, 73
EXTERNAL_GROUPS, 163
EXTERNAL_PAGES, 163
EXTERNAL_SEARCH, 152
EXTERNAL_SEARCH_ID, 152
EXTERNAL_TOOL_PATH, 135
EXTRA_PACKAGES, 154
EXTRA_SEARCH_MAPPINGS, 152
EXTRACT_ALL, 130
EXTRACT_ANON_NSPACES, 131
EXTRACT_LOCAL_CLASSES, 130
EXTRACT_LOCAL_METHODS, 130
EXTRACT_PACKAGE, 130
EXTRACT_PRIV_VIRTUAL, 130
EXTRACT_PRIVATE, 130
EXTRACT_STATIC, 130

Features, 105
features, 105
file.h, 311

globalValue, 311
FILE_PATTERNS, 137
FILE_VERSION_FILTER, 134
FILTER_PATTERNS, 138

Generated by Doxygen 1.13.1

INDEX

331

FILTER_SOURCE_FILES, 138
FILTER_SOURCE_PATTERNS, 138
flex, 7,9
Fn_Test, 313

member, 313
FORCE_LOCAL_INCLUDES, 132
FORMULA_FONTSIZE, 150
FORMULA_MACROFILE, 150
FORTRAN_COMMENT_AFTER, 139
Frequently Asked Questions, 93
FULL_PATH_NAMES, 125
FULL_SIDEBAR, 149
func

docstring, 295

pyexample, 296
func1inGroup1

Memgrp_Test, 281
func1InGroup2

Memgrp_Test, 281
func2InGroup1

Memgrp_Test, 281
func2InGroup2

Memgrp_Test, 282

GENERATE_AUTOGEN_DEF, 160
GENERATE_BUGLIST, 133
GENERATE_CHI, 147
GENERATE_DEPRECATEDLIST, 133
GENERATE_DOCBOOK, 160
GENERATE_DOCSET, 146
GENERATE_ECLIPSEHELP, 148
GENERATE_HTML, 141
GENERATE_HTMLHELP, 147
GENERATE_LATEX, 153
GENERATE_LEGEND, 167
GENERATE_MAN, 158
GENERATE_PERLMOD, 160
GENERATE_QHP, 148
GENERATE_RTF, 158
GENERATE_SQLITES, 160
GENERATE_TAGFILE, 162
GENERATE_TESTLIST, 133
GENERATE_TODOLIST, 133
GENERATE_TREEVIEW, 149
GENERATE_XML, 159
Getting started, 11
glob_func

memgrp.cpp, 282
globalValue

file.h, 311
GlobEnum

autolink.cpp, 263
globVar

autolink.cpp, 264
GPL, 4
GRAPHICAL_HIERARCHY, 166
Graphs and diagrams, 57
group.cpp, 280
GROUP_GRAPHS, 164

GROUP_NESTED_COMPOUNDS, 129

Grouping, 47
GValt

autolink.cpp, 263
GVal2

autolink.cpp, 263

handler
Javadoc_Test, 288
QTstyle_Test, 286
HAVE_DOT, 163
HHC_LOCATION, 147

HIDE_COMPOUND_REFERENCE, 132

HIDE_FRIEND_COMPOUNDS, 131
HIDE_IN_BODY_DOCS, 131
HIDE_SCOPE_NAMES, 132
HIDE_UNDOC_CLASSES, 131
HIDE_UNDOC_MEMBERS, 131
HIDE_UNDOC_NAMESPACES, 131
HIDE_UNDOC_RELATIONS, 163
HTML Commands, 227
HTML_CODE_FOLDING, 145
HTML_COLORSTYLE, 144
HTML_COLORSTYLE_GAMMA, 145
HTML_COLORSTYLE_HUE, 145
HTML_COLORSTYLE_SAT, 145
HTML_COPY_CLIPBOARD, 145
HTML_DYNAMIC_MENUS, 145
HTML_DYNAMIC_SECTIONS, 145
HTML_EXTRA_FILES, 144
HTML_EXTRA_STYLESHEET, 144
HTML_FILE_EXTENSION, 141
HTML_FOOQTER, 143
HTML_FORMULA_FORMAT, 150
HTML_HEADER, 141
HTML_INDEX_NUM_ENTRIES, 146
HTML_OUTPUT, 141
HTML_PROJECT_COOKIE, 146
HTML_STYLESHEET, 143

IDL_PROPERTY_SUPPORT, 129
IGNORE_PREFIX, 141
IMAGE_PATH, 138
IMPLICIT_DIR_DOCS, 139
INCLUDE_FILE_PATTERNS, 162
INCLUDE_GRAPH, 165
INCLUDE_PATH, 161
Include_Test, 325
INCLUDED_BY_GRAPH, 165
Including formulas, 53

Including tables, 55
INHERIT_DOCS, 126
INLINE_GROUPED_CLASSES, 129
INLINE_INFO, 132
INLINE_INHERITED MEMB, 125
INLINE_SIMPLE_STRUCTS, 129
INLINE_SOURCES, 139

INPUT, 136

INPUT_ENCODING, 137

Generated by Doxygen 1.13.1

332

INDEX

INPUT_FILE_ENCODING, 137
INPUT_FILTER, 138
Installation, 7

installation, 7
INTERACTIVE_SVG, 166
INTERNAL_DOCS, 131
Internationalization, 241
Introduction, 3

javadoc-banner.h, 288
cstyle, 288
doxygenBanner, 288
javadocBanner, 289

JAVADOC_AUTOBRIEF, 126

JAVADOC_BANNER, 126

Javadoc_Test, 286
~Javadoc_Test, 287
enumPtr, 288
enumVar, 288
handler, 288
Javadoc_Test, 287
publicVar, 288
TEnum, 287
testMe, 287
testMeToo, 287
TVall, 287
TVal2, 287
TVal3, 287

javadocBanner
javadoc-banner.h, 289

LaTeX, 14

LATEX_BATCHMODE, 157

LATEX BIB_STYLE, 157
LATEX_CMD_NAME, 153
LATEX_EMOJI_DIRECTORY, 157
LATEX_EXTRA_FILES, 157
LATEX_EXTRA_STYLESHEET, 156
LATEX_FOOTER, 156
LATEX_HEADER, 154
LATEX_HIDE_INDICES, 157
LATEX_MAKEINDEX_CMD, 153
LATEX_OUTPUT, 153

LAYOUT FILE, 134

libiconv, 7

license, 4

Linking to external documentation, 91
Lists, 43

LOOKUP_CACHE_SIZE, 129

m_a
B, 268
m_c
D, 271
m_d
C, 269
m_self
A, 268
MACRO_EXPANSION, 161

main

manual.c, 310
make, 7
MAKEINDEX_CMD_NAME, 153
man, 15
MAN_EXTENSION, 159
MAN_LINKS, 159
MAN_OUTPUT, 159
MAN_SUBDIR, 159
manual.c, 310

main, 310
Markdown support, 31
MARKDOWN_ID_STYLE, 128
MARKDOWN_SUPPORT, 128
MATHJAX_CODEFILE, 151
MATHJAX_EXTENSIONS, 151
MATHJAX_FORMAT, 150
MATHJAX_RELPATH, 151
MATHJAX_VERSION, 150
MAX

define.h, 301

structcmd.h, 291
MAX_DOT_GRAPH_DEPTH, 167
MAX_INITIALIZER_LINES, 133
member

Autolink_Test, 262

Fn_Test, 313
memgrp.cpp, 282

A, 282

B, 282

glob_func, 282
Memgrp_Test, 281

func1InGroup1, 281

func1InGroup2, 281

func2IinGroup1, 281

func2IinGroup2, 282

ungroupedFunction, 282
MIN

define.h, 301
MSCFILE_DIRS, 168
MSCGEN_TOOL, 168
MULTILINE_CPP_IS_BRIEF, 126
mux.vhdl, 298
mux_using_with, 297
mux_using_with.behavior, 298

N1, 279
NUM_PROC_THREADS, 130

OBFUSCATE_EMAILS, 150
Object, 308
objRef, 308
objUnref, 308
objRef
Object, 308
objUnref
Object, 308
open
structemd.h, 292

Generated by Doxygen 1.13.1

INDEX

333

OPTIMIZE_FOR_FORTRAN, 127
OPTIMIZE_OUTPUT_FOR_C, 127
OPTIMIZE_OUTPUT_JAVA, 127
OPTIMIZE_OUTPUT_SLICE, 127
OPTIMIZE_OUTPUT_VHDL, 127
Output Formats, 69
output formats, 69
OUTPUT_DIRECTORY, 124
OUTPUT_LANGUAGE, 125
Overload Test, 315

drawRect, 315

pag_example, 325
PAPER_TYPE, 153
Par_Test, 323
parsing, 16
PDF_HYPERLINKS, 157
Perl Module Output, 247
perimod, 247
PERLMOD_LATEX, 161
PERLMOD_MAKEVAR_PREFIX, 161
PERLMOD_PRETTY, 161
PLANTUML_CFG_FILE, 167
PLANTUML_INCLUDE_PATH, 167
PLANTUML_JAR_PATH, 167
PLANTUMLFILE_DIRS, 167
PREDEFINED, 162
Preprocessing, 61
PROJECT_BRIEF, 124
PROJECT_ICON, 124
PROJECT_LOGO, 124
PROJECT_NAME, 124
PROJECT_NUMBER, 124
publicVar

Javadoc_Test, 288

QTstyle_Test, 286
pyexample, 296

func, 296
pyexample.PyClass, 297

PyMethod, 297
PyMethod

docstring.PyClass, 296

pyexample.PyClass, 297
python, 7, 9
PYTHON_DOCSTRING, 126

QCH_FILE, 148
QHG_LOCATION, 148
QHP_CUST_FILTER_ATTRS, 148
QHP_CUST_FILTER_NAME, 148
QHP_NAMESPACE, 148
QHP_SECT_FILTER_ATTRS, 148
QHP_VIRTUAL_FOLDER, 148
Qt, 7
QT _AUTOBRIEF, 126
QTstyle_Test, 284
~QTstyle_Test, 285
enumPtr, 286
enumVar, 286

handler, 286

publicVar, 286

QTstyle_Test, 285

TEnum, 284

testMe, 285

testMeToo, 285

TVali, 285

TVal2, 285

TVal3, 285
QUIET, 135

read

structemd.h, 292
RECURSIVE, 137
REFERENCED_BY_RELATION, 139
REFERENCES_LINK_SOURCE, 139
REFERENCES_RELATION, 139
REPEAT_BRIEF, 125
RESOLVE_UNNAMED_PARAMS, 131
restypedef.cpp, 265

add, 266

Coord, 266
RTF, 15
RTF_EXTENSIONS_FILE, 158
RTF_EXTRA_FILES, 158
RTF_HYPERLINKS, 158
RTF_OUTPUT, 158
RTF_STYLESHEET_FILE, 158

SEARCH_INCLUDES, 161
SEARCHDATA_FILE, 152
SEARCHENGINE, 151
SEARCHENGINE_URL, 152
Searching, 71
SEPARATE_MEMBER_PAGES, 126
SERVER_BASED_SEARCH, 152
SHORT_NAMES, 126
SHOW_ENUM_VALUES, 149
SHOW_FILES, 134
SHOW_GROUPED_MEMB_INC, 132
SHOW_HEADERFILE, 132
SHOW_INCLUDE_FILES, 132
SHOW_NAMESPACES, 134
SHOW_USED_FILES, 134
SIP_SUPPORT, 128
SITEMAP_URL, 147
SKIP_FUNCTION_MACROS, 162
SomeNiceClass, 321
SORT_BRIEF_DOCS, 132
SORT_BY_SCOPE_NAME, 133
SORT_GROUP_NAMES, 133
SORT_MEMBER_DOCS, 132
SORT_MEMBERS_CTORS_1ST, 132
SOURCE_BROWSER, 139
SOURCE_TOOLTIPS, 139

Special Commands, 171
SQLITE3_OUTPUT, 160
SQLITE3_RECREATE_DB, 160
strcmp

Generated by Doxygen 1.13.1

334

INDEX

String, 319
STRICT_PROTO_MATCHING, 133
String, 319

strcmp, 319

stringDebug, 319
stringDebug

String, 319
STRIP_CODE_COMMENTS, 139
STRIP_FROM_INC_PATH, 125
STRIP_FROM_PATH, 125
structcmd.h, 291

close, 292

errno, 293

MAX, 291

open, 292

read, 292

UINT32, 292

write, 292
SUBGROUPING, 129

TAB_SIZE, 126
TAGFILES, 162
TEMPLATE_RELATIONS, 165
TEnum

Enum_Test, 303

Javadoc_Test, 287

QTstyle_Test, 284
Test, 299
testMe

Javadoc_Test, 287

QTstyle_Test, 285
testMeToo

Javadoc_Test, 287

QTstyle_Test, 285
The Fifth Group, 278
The First Group, 277
The Fourth Group, 278
The Second Group, 277
The Third Group, 278
TIMESTAMP, 130
TOC_EXPAND, 147
TOC_INCLUDE_HEADINGS, 128
TREEVIEW_WIDTH, 149
Troubleshooting, 99
Truck, 308
TValt

Javadoc_Test, 287

QTstyle_Test, 285
TVal2

Javadoc_Test, 287

QTstyle_Test, 285
TVal3

Javadoc_Test, 287

QTstyle_Test, 285
TYPEDEF_HIDES_STRUCT, 129

UINT32
structcmd.h, 292
UML_LIMIT_NUM_FIELDS, 164

UML_LOOK, 164
ungroupedFunction

Memgrp_Test, 282
USE_HTAGS, 140
USE_MATHJAX, 150
USE_MDFILE_AS_MAINPAGE, 139
USE_PDFLATEX, 157

V1

Enum_Test, 303
V2

Enum_Test, 303
Val1

Autolink_Test, 262

Enum_Test, 303
Val2

Autolink_Test, 262
value

Afterdoc_Test, 283
Vehicle, 309

vehicleStart, 310

vehicleStop, 310
vehicleStart

Vehicle, 310
vehicleStop

Vehicle, 310
VERBATIM_HEADERS, 140

WARN_AS ERROR, 136
WARN_FORMAT, 136
WARN_IF_DOC_ERROR, 135
WARN_IF_INCOMPLETE_DOC, 135
WARN_IF_UNDOC_ENUM VAL, 135
WARN_IF_UNDOCUMENTED, 135
WARN_LAYOUT _FILE, 136
WARN_LINE_FORMAT, 136
WARN_LOGFILE, 136
WARN_NO_PARAMDOC, 135
WARNINGS, 135
write

structcmd.h, 292

CoordStruct, 265
XML, 15
XML Commands, 235
XML_NS_MEMB_FILE_SCOPE, 159
XML_OUTPUT, 159
XML_PROGRAMLISTING, 159

y
CoordStruct, 265

Generated by Doxygen 1.13.1

	I User Manual
	Introduction
	Installation
	Compiling from source on UNIX
	Installing the binaries on UNIX
	Compiling from source on Windows
	Installing the binaries on Windows

	Getting started
	Step 0: Check if Doxygen supports your programming/hardware description language
	Step 1: Creating a configuration file
	Step 2: Running Doxygen
	HTML output
	LaTeX output
	RTF output
	XML output
	Man page output
	DocBook output

	Step 3: Documenting the sources

	Documenting the code
	Special comment blocks
	Comment blocks for C-like languages (C/C++/C#/Objective-C/PHP/Java)
	Putting documentation after members
	Examples
	Documentation at other places

	Comment blocks in Python
	Comment blocks in VHDL
	Comment blocks in Fortran

	Anatomy of a comment block

	Additional Documentation
	Custom Pages
	Scaling Up
	Automatically Adding Files
	Side Panel Treeview

	Markdown support
	Standard Markdown
	Paragraphs
	Headers
	Block quotes
	Lists
	Code Blocks
	Horizontal Rulers
	Emphasis
	Strikethrough
	code spans
	Links
	Inline Links
	Reference Links

	Images
	Automatic Linking

	Markdown Extensions
	Table of Contents
	Tables
	Fenced Code Blocks
	Header Id Attributes
	Image Attributes

	Doxygen specifics
	Including Markdown files as pages
	Treatment of HTML blocks
	Code Block Indentation
	Emphasis and strikethrough limits
	Code Spans Limits
	Lists Extensions
	Use of asterisks
	Limits on markup scope
	Support for GitHub Alerts

	Debugging problems

	Lists
	Grouping
	Topics
	Member Groups
	Subpaging

	Including formulas
	Including tables
	Graphs and diagrams
	Preprocessing
	Automatic link generation
	Links to web pages and mail addresses
	Links to classes
	Links to files
	Links to functions
	Links to other members
	typedefs

	Output Formats
	Searching
	External Indexing and Searching
	Introduction
	Configuring
	Single project index
	Multi project index

	Updating the index
	Programming interface
	Indexer input format
	Search URL format
	Search results format

	Customizing the output
	Minor Tweaks
	Overall Color
	Navigation
	Dynamic Content
	Header, Footer, and Stylesheet changes

	Changing the layout of pages
	Using the XML output

	Custom Commands
	Simple aliases
	Aliases with arguments
	Nesting custom command

	Linking to external documentation
	Frequently Asked Questions
	How to get information on the index page in HTML?
	Help, some/all of the members of my class / file / namespace are not documented?
	When I set EXTRACT_ALL to NO none of my functions are shown in the documentation.
	My file with a custom extension is not parsed (properly) (anymore).
	How can I make Doxygen ignore some code fragment?
	How can I change what is after the #include in the class documentation?
	How can I use tag files in combination with compressed HTML?
	I don't like the quick index that is put above each HTML page, what do I do?
	The overall HTML output looks different, while I only wanted to use my own html header file
	Why does Doxygen use Qt?
	How can I exclude all test directories from my directory tree?
	Doxygen automatically generates a link to the class MyClass somewhere in the running text. How do I prevent that at a certain place?
	My favorite programming language is X. Can I still use Doxygen?
	Help! I get the cryptic message "input buffer overflow, can't enlarge buffer because scanner uses REJECT"
	When running make in the latex directory I get "TeX capacity exceeded". Now what?
	Why are dependencies via STL classes not shown in the dot graphs?
	I have problems getting the search engine to work with PHP5 and/or windows
	Can I configure Doxygen from the command line?
	How did Doxygen get its name?
	What was the reason to develop Doxygen?
	How to prevent interleaved output

	Troubleshooting
	Known Problems
	How to Help
	How to report a bug

	II Reference Manual
	Features
	Doxygen usage
	Fine-tuning the output

	Doxywizard usage
	Wizard tab
	Project settings
	Mode of operating
	Output to produce
	Diagrams to generate

	Expert tab
	Run tab
	Menu options
	File menu
	Settings menu
	Help menu

	Configuration
	Format
	Project related configuration options
	Build related configuration options
	Configuration options related to warning and progress messages
	Configuration options related to the input files
	Configuration options related to source browsing
	Configuration options related to the alphabetical class index
	Configuration options related to the HTML output
	Configuration options related to the LaTeX output
	Configuration options related to the RTF output
	Configuration options related to the man page output
	Configuration options related to the XML output
	Configuration options related to the DOCBOOK output
	Configuration options for the AutoGen Definitions output
	Configuration options related to Sqlite3 output
	Configuration options related to the Perl module output
	Configuration options related to the preprocessor
	Configuration options related to external references
	Configuration options related to diagram generator tools
	Examples

	Special Commands
	Introduction
	\addtogroup <name> [(title)]
	\callgraph
	\hidecallgraph
	\callergraph
	\hidecallergraph
	\showrefby
	\hiderefby
	\showrefs
	\hiderefs
	\showinlinesource
	\hideinlinesource
	\includegraph
	\hideincludegraph
	\includedbygraph
	\hideincludedbygraph
	\directorygraph
	\hidedirectorygraph
	\collaborationgraph
	\hidecollaborationgraph
	\inheritancegraph['{option}']
	\hideinheritancegraph
	\groupgraph
	\hidegroupgraph
	\showenumvalues
	\hideenumvalues
	\qualifier <label> | "(text)"
	\category <name> [<header-file>] [<header-name>]
	\class <name> [<header-file>] [<header-name>]
	\concept <name>
	\def <name>
	\defgroup <name> (group title)
	\dir [<path fragment>]
	\enum <name>
	\example['{lineno}'] <file-name>
	\endinternal
	\extends <name>
	\file [<name>]
	\fileinfo['{'option'}']
	\lineinfo
	\fn (function declaration)
	\headerfile <header-file> [<header-name>]
	\hideinitializer
	\idlexcept <name>
	\implements <name>
	\ingroup (<groupname> [<groupname>]*)
	\interface <name> [<header-file>] [<header-name>]
	\internal
	\mainpage [(title)]
	\memberof <name>
	\module <name>
	\name [(header)]
	\namespace <name>
	\nosubgrouping
	\overload [(function declaration)]
	\package <name>
	\page <name> (title)
	\private
	\privatesection
	\property (qualified property name)
	\protected
	\protectedsection
	\protocol <name> [<header-file>] [<header-name>]
	\public
	\publicsection
	\pure
	\relates <name>
	\related <name>
	\relatesalso <name>
	\relatedalso <name>
	\showinitializer
	\static
	\struct <name> [<header-file>] [<header-name>]
	\typedef (typedef declaration)
	\union <name> [<header-file>] [<header-name>]
	\var (variable declaration)
	\vhdlflow [(title for the flow chart)]
	\weakgroup <name> [(title)]
	\attention { attention text }
	\author { list of authors }
	\authors { list of authors }
	\brief { brief description }
	\bug { bug description }
	\cond [(section-label)]
	\copyright { copyright description }
	\date { date description }
	\showdate "<format>" [<date_time>]
	\deprecated { description }
	\details { detailed description }
	\noop (text to be ignored)
	\raisewarning (text to be shown as warning)
	\else
	\elseif (section-label)
	\endcond
	\endif
	\exception <exception-object> { exception description }
	\if (section-label)
	\ifnot (section-label)
	\important { important text }
	\invariant { description of invariant }
	\note { text }
	\par [(paragraph title)] { paragraph }
	\param[<dir>] <parameter-name> { parameter description }
	\parblock
	\endparblock
	\tparam <template-parameter-name> { description }
	\post { description of the postcondition }
	\pre { description of the precondition }
	\remark { remark text }
	\remarks { remark text }
	\result { description of the result value }
	\return { description of the return value }
	\returns { description of the return value }
	\retval <return value> { description }
	\sa { references }
	\see { references }
	\short { short description }
	\since { text }
	\test { paragraph describing a test case }
	\throw <exception-object> { exception description }
	\throws <exception-object> { exception description }
	\todo { paragraph describing what is to be done }
	\version { version number }
	\warning { warning message }
	\xrefitem <key> "heading" "list title" { text }
	\addindex (text)
	\anchor <word>
	\cite <label>
	\endlink
	\link <link-object>
	\ref <name> ["(text)"]
	\refitem <name>
	\secreflist
	\endsecreflist
	\subpage <name> ["(text)"]
	\tableofcontents['{'[option[:level]][,option[:level]]*'}']
	\section <section-name> (section title)
	\subsection <subsection-name> (subsection title)
	\subsubsection <subsubsection-name> (subsubsection title)
	\paragraph <paragraph-name> (paragraph title)
	\subparagraph <subparagraph-name> (subparagraph title)
	\subsubparagraph <subsubparagraph-name> (subsubparagraph title)
	\dontinclude['{lineno}'] <file-name>
	\include['{'option'}'] <file-name>
	\includelineno <file-name>
	\includedoc['{'option'}'] <file-name>
	\line (pattern)
	\skip (pattern)
	\skipline (pattern)
	\snippet['{'option'}'] <file-name> (block_id)
	\snippetlineno <file-name> (block_id)
	\snippetdoc['{'option'}'] <file-name> (block_id)
	\until (pattern)
	\verbinclude <file-name>
	\htmlinclude['[block]'] <file-name>
	\latexinclude <file-name>
	\rtfinclude <file-name>
	\maninclude <file-name>
	\docbookinclude <file-name>
	\xmlinclude <file-name>
	\a <word>
	\arg { item-description }
	\b <word>
	\c <word>
	\code['{'<word>'}']
	\copydoc <link-object>
	\copybrief <link-object>
	\copydetails <link-object>
	\docbookonly
	\dot ["caption"] [<sizeindication>=<size>]
	\emoji "name"
	\msc ["caption"] [<sizeindication>=<size>]
	\startuml ['{'option[,option]'}'] ["caption"] [<sizeindication>=<size>]
	\dotfile <file> ["caption"] [<sizeindication>=<size>]
	\mscfile <file> ["caption"] [<sizeindication>=<size>]
	\diafile <file> ["caption"] [<sizeindication>=<size>]
	\doxyconfig <config_option>
	\e <word>
	\em <word>
	\endcode
	\enddocbookonly
	\enddot
	\endmsc
	\enduml
	\plantumlfile <file> ["caption"] [<sizeindication>=<size>]
	\endhtmlonly
	\endlatexonly
	\endmanonly
	\endrtfonly
	\endverbatim
	\endxmlonly
	\f$
	\f(
	\f)
	\f[
	\f]
	\f{environment}{
	\f}
	\htmlonly['[block]']
	\image['{'option[,option]'}'] <format> <file> ["caption"] [<sizeindication>=<size>]
	\latexonly
	\manonly
	\li { item-description }
	\n
	\p <word>
	\rtfonly
	\verbatim
	\xmlonly
	\\
	\@
	\~[LanguageId]
	\&
	\$
	\#
	\<
	\>
	\%
	\"
	\.
	\?
	\!
	\=
	\::
	\|
	\--
	\---

	HTML Commands
	HTML tag commands
	HTML4 character entities

	XML Commands
	Emoji support
	Representation
	Emoji image retrieval

	III Developers Manual
	Internationalization
	Perl Module Output
	Usage
	Using the LaTeX generator.
	Creation of PDF and DVI output

	Documentation format.
	Data structure
	Perl Module Tree Nodes

	Doxygen's Internals

	 Appendices
	Autolink Example
	Class Documentation
	Autolink_Test Class Reference
	Detailed Description
	Member Enumeration Documentation
	Constructor & Destructor Documentation
	Member Function Documentation

	File Documentation
	autolink.cpp File Reference
	Detailed Description
	Macro Definition Documentation
	Typedef Documentation
	Enumeration Type Documentation
	Variable Documentation

	Resolving Typedef Example
	Class Documentation
	CoordStruct Struct Reference
	Detailed Description
	Member Data Documentation

	File Documentation
	restypedef.cpp File Reference
	Detailed Description
	Typedef Documentation
	Function Documentation

	Diagrams Example
	Class Documentation
	A Class Reference
	Member Data Documentation

	B Class Reference
	Member Data Documentation

	C Class Reference
	Member Data Documentation

	D Class Reference
	Member Data Documentation

	E Class Reference

	File Documentation
	diagrams_a.h File Reference
	diagrams_a.h
	diagrams_b.h File Reference
	diagrams_b.h
	diagrams_c.h File Reference
	diagrams_c.h
	diagrams_d.h File Reference
	diagrams_d.h
	diagrams_e.h File Reference
	diagrams_e.h

	Grouping Example
	Topic Documentation
	The First Group
	Detailed Description

	The Second Group
	Detailed Description

	The Third Group
	Detailed Description
	The Fourth Group

	The Fifth Group

	Namespace Documentation
	N1 Namespace Reference
	Detailed Description

	Class Documentation
	C1 Class Reference
	Detailed Description

	C2 Class Reference
	Detailed Description

	C3 Class Reference
	Detailed Description

	C4 Class Reference
	Detailed Description

	C5 Class Reference
	Detailed Description

	File Documentation
	group.cpp File Reference
	Detailed Description

	Member Groups Example
	Class Documentation
	Memgrp_Test Class Reference
	Detailed Description
	Member Function Documentation

	File Documentation
	memgrp.cpp File Reference
	Detailed Description
	Macro Definition Documentation
	Function Documentation

	Style Examples
	After Block Example
	Class Documentation
	Afterdoc_Test Class Reference

	File Documentation
	afterdoc.h

	QT Style Example
	Class Documentation
	QTstyle_Test Class Reference

	Javadoc Style Example
	Class Documentation
	Javadoc_Test Class Reference

	Javadoc Banner Example
	File Documentation
	javadoc-banner.h File Reference
	javadoc-banner.h

	Structural Commands Example
	File Documentation
	structcmd.h File Reference
	Detailed Description
	Macro Definition Documentation
	Typedef Documentation
	Function Documentation
	Variable Documentation

	structcmd.h

	Language Examples
	Python Docstring Example
	Namespace Documentation
	docstring Namespace Reference

	Class Documentation
	docstring.PyClass Class Reference

	File Documentation
	docstring.py File Reference

	Python Example
	Namespace Documentation
	pyexample Namespace Reference

	Class Documentation
	pyexample.PyClass Class Reference

	VHDL Example
	Design Unit Documentation
	mux_using_with Entity Reference
	mux_using_with.behavior Architecture Reference

	File Documentation
	mux.vhdl File Reference

	Class Example
	Class Documentation
	Test Class Reference
	Detailed Description

	File Documentation
	class.h

	Define Example
	File Documentation
	define.h File Reference
	Detailed Description
	Macro Definition Documentation

	define.h

	Enum Example
	Class Documentation
	Enum_Test Class Reference
	Detailed Description
	Member Enumeration Documentation

	File Documentation
	enum.h

	Example Example
	Class Documentation
	Example_Test Class Reference
	Detailed Description
	Member Function Documentation

	Examples
	example_test.cpp

	Extends/Implements Example
	Class Documentation
	Car Struct Reference
	Detailed Description

	Object Struct Reference
	Detailed Description
	Member Function Documentation

	Truck Struct Reference
	Detailed Description

	Vehicle Struct Reference
	Detailed Description
	Member Function Documentation

	File Documentation
	manual.c File Reference
	Function Documentation

	File Example
	File Documentation
	file.h File Reference
	Detailed Description
	Variable Documentation

	file.h

	Fn Example
	Class Documentation
	Fn_Test Class Reference
	Detailed Description
	Member Function Documentation

	File Documentation
	func.h

	Overload Example
	Class Documentation
	Overload_Test Class Reference
	Detailed Description
	Member Function Documentation

	Page Example
	A documentation page
	An example section
	The first subsection
	The second subsection

	Another page

	Relates Example
	Class Documentation
	String Class Reference
	Detailed Description
	Friends And Related Symbol Documentation

	Author Example
	Bug List
	Class Documentation
	SomeNiceClass Class Reference
	Detailed Description

	Par Example
	Class Documentation
	Par_Test Class Reference
	Detailed Description

	Include Example
	pag_example
	Class Documentation
	Include_Test Class Reference
	Detailed Description

